scholarly journals Single Local Injection of Epigallocatechin Gallate-Modified Gelatin Attenuates Bone Resorption and Orthodontic Tooth Movement in Mice

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1384 ◽  
Author(s):  
Yuta Katsumata ◽  
Hiroyuki Kanzaki ◽  
Yoshitomo Honda ◽  
Tomonari Tanaka ◽  
Yuuki Yamaguchi ◽  
...  

Osteoclastic bone resorption enables orthodontic tooth movement (OTM) in orthodontic treatment. Previously, we demonstrated that local epigallocatechin gallate (EGCG) injection successfully slowed the rate of OTM; however, repeat injections were required. In the present study, we produced a liquid form of EGCG-modified gelatin (EGCG-GL) and examined the properties of EGCG-GL with respect to prolonging EGCG release, NF-E2-related factor 2 (Nrf2) activation, osteoclastogenesis inhibition, bone destruction, and OTM. We found EGCG-GL both prolonged the release of EGCG and induced the expression of antioxidant enzyme genes, such as heme oxygenase 1 (Hmox1) and glutamate-cysteine ligase (Gclc), in the mouse macrophage cell line, RAW264.7. EGCG-GL attenuated intracellular reactive oxygen species (ROS) levels were induced by the receptor activator of nuclear factor-kB ligand (RANKL) and inhibited RANKL-mediated osteoclastogenesis in vitro. An animal model of bone destruction, induced by repeat Lipopolysaccharide (LPS)-injections into the calvaria of male BALB/c mice, revealed that a single injection of EGCG-GL on day-1 could successfully inhibit LPS-mediated bone destruction. Additionally, experimental OTM of maxillary first molars in male mice was attenuated by a single EGCG-GL injection on day-1. In conclusion, EGCG-GL prolongs the release of EGCG and inhibits osteoclastogenesis via the attenuation of intracellular ROS signaling through the increased expression of antioxidant enzymes. These results indicate EGCG-GL would be a beneficial therapeutic approach both in destructive bone disease and in controlling alveolar bone metabolism.

2021 ◽  
Vol 16 (4) ◽  
pp. 1934578X2110024
Author(s):  
Taira Katayama ◽  
Takenori Sato ◽  
Nobushiro Hamada ◽  
Seiji Goda ◽  
Tetsutaro Yamaguchi ◽  
...  

Recently, natural ingredients have focused on the inhibition of bacteria-induced alveolar bone resorption in orthodontic treatment. Jixueteng (Jix), a Chinese traditional medicine, contains several kinds of flavonoids given their biological properties. We evaluated the effects of Jix on experimental periodontitis during orthodontic tooth movement (OTM) in rats. To this end, 9-week-old male Wistar rats, which were equipped with orthodontic appliance, were orally infected with Porphyromonas gingivalis (Pg), while Jix was administered in their drinking water. A total of 28 days after the beginning of OTM, alveolar bone resorption on the right side of the upper jaws was scanned with micro-computed tomography. These were also used as histological specimens and underwent tartrate-resistant acid phosphatase (TRAP) staining. TRAP-positive multinucleated cells were counted as osteoclasts. As a result, the distance of tooth movement in the OTM and Pg infection with Jix administration (OTM + Pg + Jix) group was the same as that of the sham-infected group. The amount of bone resorption and number of osteoclasts in the OTM + Pg + Jix group was more significantly decreased than that in the OTM and Pg-infected group ( P < 0.05). Hence, Jix had little effect on OTM and inhibited Pg-induced alveolar bone destruction. We suggested that the administration of Jix can support tooth movement and contribute to the prevention of periodontitis during orthodontic treatment.


Author(s):  
Birgit Rath-Deschner ◽  
Andressa V. B. Nogueira ◽  
Svenja Beisel-Memmert ◽  
Marjan Nokhbehsaim ◽  
Sigrun Eick ◽  
...  

Abstract Objectives The aim of this in vitro and in vivo study was to investigate the interaction of periodontitis and orthodontic tooth movement on interleukin (IL)-6 and C-X-C motif chemokine 2 (CXCL2). Materials and methods The effect of periodontitis and/or orthodontic tooth movement (OTM) on alveolar bone and gingival IL-6 and CXCL2 expressions was studied in rats by histology and RT-PCR, respectively. The animals were assigned to four groups (control, periodontitis, OTM, and combination of periodontitis and OTM). The IL-6 and CXCL2 levels were also studied in human gingival biopsies from periodontally healthy and periodontitis subjects by RT-PCR and immunohistochemistry. Additionally, the synthesis of IL-6 and CXCL2 in response to the periodontopathogen Fusobacterium nucleatum and/or mechanical strain was studied in periodontal fibroblasts by RT-PCR and ELISA. Results Periodontitis caused an increase in gingival levels of IL-6 and CXCL2 in the animal model. Moreover, orthodontic tooth movement further enhanced the bacteria-induced periodontal destruction and gingival IL-6 gene expression. Elevated IL-6 and CXCL2 gingival levels were also found in human periodontitis. Furthermore, mechanical strain increased the stimulatory effect of F. nucleatum on IL-6 protein in vitro. Conclusions Our study suggests that orthodontic tooth movement can enhance bacteria-induced periodontal inflammation and thus destruction and that IL-6 may play a pivotal role in this process. Clinical relevance Orthodontic tooth movement should only be performed after periodontal therapy. In case of periodontitis relapse, orthodontic therapy should be suspended until the periodontal inflammation has been successfully treated and thus the periodontal disease is controlled again.


2009 ◽  
Vol 88 (8) ◽  
pp. 752-756 ◽  
Author(s):  
A. Miyagawa ◽  
M. Chiba ◽  
H. Hayashi ◽  
K. Igarashi

During orthodontic tooth movement, the activation of the vascular system in the compressed periodontal ligament (PDL) is an indispensable process in tissue remodeling. We hypothesized that compressive force would induce angiogenesis of PDL through the production of vascular endothelial growth factor (VEGF). We examined the localization of VEGF in rat periodontal tissues during experimental tooth movement in vivo, and the effects of continuous compressive force on VEGF production and angiogenic activity in human PDL cells in vitro. PDL cells adjacent to hyalinized tissue and alveolar bone on the compressive side showed marked VEGF immunoreactivity. VEGF mRNA expression and production in PDL cells increased, and conditioned medium stimulated tube formation. These results indicate that continuous compressive force enhances VEGF production and angiogenic activity in PDL cells, which may contribute to periodontal remodeling, including angiogenesis, during orthodontic tooth movement.


1988 ◽  
Vol 132 (4) ◽  
pp. 304-309 ◽  
Author(s):  
Chung-Fu Chao ◽  
Chung Shih ◽  
Teen-Meei Wang ◽  
Tai-Hua Lo

2016 ◽  
pp. cjw038 ◽  
Author(s):  
Takeshi Kurohama ◽  
Hitoshi Hotokezaka ◽  
Megumi Hashimoto ◽  
Takako Tajima ◽  
Kotaro Arita ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Judit Symmank ◽  
Martin Chorus ◽  
Sophie Appel ◽  
Jana Marciniak ◽  
Isabel Knaup ◽  
...  

Abstract Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.


2017 ◽  
Vol 50 (4) ◽  
pp. 188
Author(s):  
Noengki Prameswari ◽  
Arya Brahmanta

Background: Orthodontic tooth movement is a continual and balanced process between bone deposition and bone resorption in pressure and tension sites. Stichopus hermanii is one of the best fishery commodities in Indonesia. It is natural and contains various active ingredients such as hyaluronic acid, chondroitin sulphate, cell growth factor, eicosa pentaenoic acid (EPA) docosa hexaenoic acid (DHA) and flavonoid that potentially play a role in orthodontic tooth movement. Purpose: The aim of this study was to investigate the active ingredients of nanopowder Stichopus hermanii promoting bone resorption in tension area orthodontic tooth movement. Methods: A quantitative test for active ingredients of stichopus hermanii was conducted. Thirty two male Cavia cobaya were divisibled became four groups. K (–) groups as a negative control group (without treatment), K (+) groups as a positive control group which were provided with a separator rubber for orthodontic tooth movement, and P1, P2 groups, which were treated with 3% and 3.5% stichopus hermanii for orthodontic tooth movement. After treatment the cavia cobaya were sacrificed. TRAP-6 expression as a osteoclast marker was examined by means of an immunohistochemistry method. Results: A one-way Anova test confirmed that TRAP-6 expression was significantly increased with p = 0.00 (p≤0,05) in P2 compared to K (+). P2 to K (–), P2 to P1 and P1 to K (+) had no significant differences Conclusion: Nanopowder Stichopus hermanii 3.5% has an active ingredient that could increase osteoclast activity to resorb periodontal ligament and alveolar bone in tension areas of orthodontic tooth movement.


2018 ◽  
Vol 97 (12) ◽  
pp. 1374-1382 ◽  
Author(s):  
N. Odagaki ◽  
Y. Ishihara ◽  
Z. Wang ◽  
E. Ei Hsu Hlaing ◽  
M. Nakamura ◽  
...  

Sclerostin (Scl) negatively regulates bone formation and favors bone resorption. Osteocytes, the cells responsible for mechanosensing, are known as the primary source of Scl and are a key regulator of bone remodeling through the induction of receptor activator of NF-κB ligand (RANKL). However, the spatiotemporal patterns of Scl in response to mechanical stimuli and their regulatory mechanisms remain unknown. We investigated the regulatory dynamics of the SOST/Scl expression generated by orthodontic tooth movement (OTM) in vivo and in vitro. In 8-wk-old male mice, coil springs were used to move the first molar mesially for 0, 1, 5, or 10 d. A regional histogram and the distribution patterns of the Scl expression showed that the Scl expression in the alveolar bone was increased on the compression side and peaked on day 5, with a gradual increase in the degree of significance. On day 10, the expression around the periodontal ligament (PDL)–alveolar bone boundary returned to the control level. Conversely, the expression of Scl on the tension side was only significantly decreased on day 1. Compressive force biphasically modulated the SOST/Scl expression in the isolated human PDL and thereby upregulated osteocytic SOST via paracrine activation in an osteocyte-PDL co-culture system designed to mimic OTM. This system did not affect the RANKL or OPG expression in osteocytes, suggesting that the bone resorption pathways are acted upon in a PDL-dependent and osteocyte-independent manner through RANKL/OPG signaling. Moreover, sclerostin neutralizing antibody significantly attenuated the upregulation of SOST that was induced by compressive force. In conclusion, our results provide evidence to support that factors secreted by the PDL, including SOST/Scl, control alveolar bone remodeling through osteocytic SOST/Scl in OTM.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Fumitoshi Ohori ◽  
Hideki Kitaura ◽  
Aseel Marahleh ◽  
Akiko Kishikawa ◽  
Saika Ogawa ◽  
...  

Osteocytes are abundant cells in bone, which contribute to bone maintenance. Osteocytes express receptor activator of nuclear factor kappa-B ligand (RANKL) and regulate osteoclast formation. Orthodontic tooth movement (OTM) occurs by osteoclast resorption of alveolar bone. Osteocyte-derived RANKL is critical in bone resorption during OTM. Additionally, tumor necrosis factor-α (TNF-α) is important in osteoclastogenesis during OTM. Sclerostin has been reported to enhance RANKL expression in the MLO-Y4 osteocyte-like cell line. This study investigated the effect of TNF-α on sclerostin expression in osteocytes during OTM. In vitro analysis of primary osteocytes, which were isolated from DMP1-Topaz mice by sorting the Topaz variant of GFP-positive cells, revealed that SOST mRNA expression was increased when osteocytes were cultured with TNF-α and that RANKL mRNA expression was increased when osteocytes were cultured with sclerostin. Moreover, the number of TRAP-positive cells was increased in osteocytes and osteoclast precursors cocultured with sclerostin. In vivo analysis of mouse calvariae that had been subcutaneously injected with phosphate-buffered saline (PBS) or TNF-α revealed that the number of TRAP-positive cells and the percentage of sclerostin-positive osteocytes were higher in the TNF-α group than in the PBS group. Furthermore, the level of SOST mRNA was increased by TNF-α. As an OTM model, a Ni-Ti closed-coil spring connecting the upper incisors and upper-left first molar was placed to move the first molar to the mesial direction in wild-type (WT) mice and TNF receptor 1- and 2-deficient (TNFRsKO) mice. After 6 days of OTM, the percentage of sclerostin-positive osteocytes on the compression side of the first molar in TNFRsKO mice was lower than that in WT mice. In this study, TNF-α increased sclerostin expression in osteocytes, and sclerostin enhanced RANKL expression in osteocytes. Thus, TNF-α may play an important role in sclerostin expression in osteocytes and enhance osteoclast formation during OTM.


Sign in / Sign up

Export Citation Format

Share Document