scholarly journals New Type of Sodium Alginate-g-acrylamide Polyelectrolyte Obtained by Electron Beam Irradiation: Characterization and Study of Flocculation Efficacy and Heavy Metal Removal Capacity

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 234 ◽  
Author(s):  
Gabriela Craciun ◽  
Elena Manaila and Daniel Ighigeanu

The goals of the paper were first the obtainment and characterization of sodium alginate-g-acrylamide polyelectrolytes by electron beam irradiation in the range of 0.5 to 2 kGy, and second, the evaluation of flocculation efficacy and heavy metal removal capacity from aqueous solutions of known concentrations. Based on sodium alginate concentration, two types of grafted polymers were obtained. Physical, chemical, and structural investigations were performed. Flocculation studies under different stirring conditions on 0.5, 0.1 and 0.2% kaolin suspension were done. The removal capacity of Cu2+ and Cr6+ ions was also investigated. The acrylamide grafting ratio on sodium alginate backbone was found up to 2000% for samples containing 1% sodium alginate and up to 500% for samples containing 2% sodium alginate. Transmittances between 98 and 100% were obtained using, in the flocculation studies, polyelectrolytes containing 2% sodium alginate in concentrations of 0.5 and 1 ppm on kaolin suspension of 0.1 wt %. The polymer concentration was found critical for kaolin suspension of 0.05 and 0.1 wt %. Polymers containing 1% sodium alginate were efficient in Cr6+ ion removal, while those containing 2% in Cu2+ ion removal.

2016 ◽  
Vol 7 (4) ◽  
pp. 387-419 ◽  
Author(s):  
Renu ◽  
Madhu Agarwal ◽  
K. Singh

Heavy metals are discharged into water from various industries. They can be toxic or carcinogenic in nature and can cause severe problems for humans and aquatic ecosystems. Thus, the removal of heavy metals from wastewater is a serious problem. The adsorption process is widely used for the removal of heavy metals from wastewater because of its low cost, availability and eco-friendly nature. Both commercial adsorbents and bioadsorbents are used for the removal of heavy metals from wastewater, with high removal capacity. This review article aims to compile scattered information on the different adsorbents that are used for heavy metal removal and to provide information on the commercially available and natural bioadsorbents used for removal of chromium, cadmium and copper, in particular.


2012 ◽  
Vol 468-471 ◽  
pp. 2882-2890 ◽  
Author(s):  
R. H. Al Anbari ◽  
S. M. Alfatlawi ◽  
J. H. Albaidhani

Heavy metal removal by electrocoagulation using iron electrodes material was investigated in this paper. Several working parameters, such as pH, current density and heavy metal ions concentration were studied in an attempt to achieve a higher removal capacity. A simple and efficient treatment process for removal of heavy metals is essentially necessary. The performance of continuous flow electrocoagulation system, with reactor consists of a ladder series of twelve electrolytic cells, each cell containing stainless steel cathode and iron anode. The treatment of synthetic solutions containing Zn 2+,Cu 2+,Ni 2+,Cr 3+,Cd 2+ and Co 2+ ,has been investigated. Results showed that iron is very effective as sacrificial electrode material for heavy metals removal efficiency and cost points. Also it was concluded that the chromium has lower efficient removal as compared to zinc, copper and nickel. At the same time cadmium and cobalt have minimum removal efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90602-90608 ◽  
Author(s):  
Amir Abdolmaleki ◽  
Shadpour Mallakpour ◽  
Sedigheh Borandeh

A novel magnetic nano-adsorbent containing Fe3O4 nanoparticles functionalized with MCT-β-CD was fabricated and exhibited a remarkable enhancement in heavy metal removal efficiency from aqueous solutions.


2018 ◽  
Vol 18 (3) ◽  
pp. 472
Author(s):  
Venty Suryanti ◽  
Sri Hastuti ◽  
Tutik Dwi Wahyuningsih ◽  
Mudasir Mudasir ◽  
Dian Kresnadipayana ◽  
...  

The batch removal of Cu(II), Cd(II) and Pb(II) from individual heavy metal ion aqueous synthetic solution using biosurfactants produced by Pseudomonas aeruginosa with corn oil as substrate was investigated. The metal ion removal process of crude preparation biosurfactants (CPB) was established to be dependent on the initial pH and contact time. The optimum metal removal was observed at pH 6.0 of the initial metal solution and 10 min of contact time. The affinity sequence for metal ion removal was Pb(II)>Cd(II)>Cu(II). The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from single metal ions solution were 0.169, 0.276 and 0.323 mg/g, respectively. The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from multi metal ions solution were 0.064, 0.215 and 0.275 mg/g, respectively. The removal capacity of individual metal ion was diminished by the presence of other metal ions in multi metal ions from synthetic aqueous solution. The removal capacity value of biosurfactant for Cu(II), Cd(II) and Pb(II) from silver industry wastewater were 0.027, 0.055 and 0.291 mg/g, respectively. The results indicated that biosurfactants have potential to be used in the remediation of heavy metals in industrial wastewater.


2015 ◽  
Vol 72 (9) ◽  
pp. 1488-1494 ◽  
Author(s):  
Nur Koçberber Kiliç ◽  
Güliz Kürkçü ◽  
Durna Kumruoğlu ◽  
Gönül Dönmez

This study is focused on isolation of Ni(II), Cu(II) and Cr(VI) resistant bacteria to assess their exopolysaccharide (EPS) production and related bioremoval capacities. Mixed cultures had higher heavy metal removal capacity in media with molasses (MAS) than the control cultures lacking this carbon (AS) containing 50 mg/l of heavy metal. The yields were 32%, 75.7%, and 51.1% in MAS, while the corresponding values were 29%, 55.1%, and 34.5% in AS, respectively. Purification of the strains 1, 5 and 6 present in the mixed cultures decreased the bioremoval capacities of the mixed culture samples, although these strains produced higher EPS amounts in MAS agar. Strain 5 had the highest Cu(II) (69.1%) and Cr(VI) (43.1%) removal rates at 25 mg/l initial concentration of each pollutant with EPS amounts of 0.74 g/l and 1.05 g/l, respectively. This strain was identified as Stenotrophomonas maltophilia. The presented data show that especially mixed and also pure cultures of bacterial strains isolated from Ankara Stream could be assessed as potential bioremoval agents in the treatment of Cu(II) or Cr(VI) containing wastewaters.


1992 ◽  
Vol 26 (1-2) ◽  
pp. 237-246 ◽  
Author(s):  
V. Tare ◽  
S. Chaudhari ◽  
M. Jawed

Insoluble (ISX) and soluble starch xanthate (SSX) were synthesized in the laboratory from corn starch, and were used for metal [Cd(II), Cu(II) and Cr(VI)] removal from aqueous systems. Results indicate that soluble as well as insoluble xanthate processes are capable of meeting various effluent disposal standards. Metal removal by both the processes is maximum in the pH range 4 to 5. Mechanism of Cu(I I)-xanthate and Cr(VI)-xanthate interaction is also discussed. From overall comparison of the two processes it appears that theinsoluble xanthate process has an edge over the solublexanthate process in terms of metal removal capacity, reliability and ease of operation, particularly for cadmium removal. However, soluble xanthate process appears to be relatively less expensive compared to insoluble xanthate.


Sign in / Sign up

Export Citation Format

Share Document