scholarly journals Synthesis of Nixantphos Core-Functionalized Amphiphilic Nanoreactors and Application to Rhodium-Catalyzed Aqueous Biphasic 1-Octene Hydroformylation

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1107 ◽  
Author(s):  
Ahmad Joumaa ◽  
Florence Gayet ◽  
Eduardo J. Garcia-Suarez ◽  
Jonas Himmelstrup ◽  
Anders Riisager ◽  
...  

A latex of amphiphilic star polymer particles, functionalized in the hydrophobic core with nixantphos and containing P(MAA-co-PEOMA) linear chains in the hydrophilic shell (nixantphos-functionalized core-crosslinked micelles, or nixantphos@CCM), has been prepared in a one-pot three-step convergent synthesis using reversible addition-fragmentation chain transfer (RAFT) polymerization in water. The synthesis involves polymerization-induced self-assembly (PISA) in the second step and chain crosslinking with di(ethylene glycol) dimethacrylate (DEGDMA) in the final step. The core consists of a functionalized polystyrene, obtained by incorporation of a new nixantphos-functionalized styrene monomer (nixantphos-styrene), which is limited to 1 mol%. The nixantphos-styrene monomer was synthesized in one step by nucleophilic substitution of the chloride of 4-chloromethylstyrene by deprotonated nixantphos in DMF at 60 °C, without interference of either phosphine attack or self-induced styrene polymerization. The polymer particles, after loading with the [Rh(acac)(CO)2] precatalyst to yield Rh-nixantphos@CCM, function as catalytic nanoreactors under aqueous biphasic conditions for the hydroformylation of 1-octene to yield n-nonanal selectively, with no significant amounts of the branched product 2-methyl-octanal.

2018 ◽  
Vol 9 (13) ◽  
pp. 1593-1602 ◽  
Author(s):  
Fabian H. Sobotta ◽  
Franziska Hausig ◽  
Dominic O. Harz ◽  
Stephanie Hoeppener ◽  
Ulrich S. Schubert ◽  
...  

Combining a sequential, one-pot RAFT polymerization with the polymerization-induced self-assembly process results in a versatile oxidation-responsive carrier system.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 352 ◽  
Author(s):  
Isadora Berlanga

Giant vesicles with several-micrometer diameters were prepared by the self-assembly of an amphiphilic block copolymer in the presence of the Belousov–Zhabotinsky (BZ) reaction. The vesicle is composed of a non-uniform triblock copolymer synthesized by multi-step reactions in the presence of air at room temperature. The triblock copolymer contains poly(glycerol monomethacrylate) (PGMA) as the hydrophilic block copolymerized with tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)3), which catalyzes the BZ reaction, and 2-hydroxypropyl methacrylate (HPMA) as the hydrophobic block. In this new approach, the radicals generated in the BZ reaction can activate a reversible addition-fragmentation chain transfer (RAFT) polymerization to self-assemble the polymer into vesicles with diameters of approximately 3 µm. X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the PGMA-b-Ru(bpy)3-b-PHPMA triblock copolymer is brominated and increases the osmotic pressure inside the vesicle, leading to micrometer-sized features. The effect of solvent on the morphological transitions are also discussed briefly. This BZ strategy, offers a new perspective to prepare giant vesicles as a platform for promising applications in the areas of microencapsulation and catalyst support, due to their significant sizes and large microcavities.


2017 ◽  
Vol 38 (8) ◽  
pp. 1600780 ◽  
Author(s):  
Steffen Cosson ◽  
Maarten Danial ◽  
Julien Rosselgong Saint-Amans ◽  
Justin J. Cooper-White

RSC Advances ◽  
2015 ◽  
Vol 5 (119) ◽  
pp. 98559-98565 ◽  
Author(s):  
Muhammad Mumtaz ◽  
Karim Aissou ◽  
Dimitrios Katsigiannopoulos ◽  
Cyril Brochon ◽  
Eric Cloutet ◽  
...  

Controlled polymerization and self-assembly of novel block copolymer electrolytes.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3145 ◽  
Author(s):  
Katharina Nieswandt ◽  
Prokopios Georgopanos ◽  
Clarissa Abetz ◽  
Volkan Filiz ◽  
Volker Abetz

In this work, we present a novel synthetic route to diblock copolymers based on styrene and 3-vinylpyridine monomers. Surfactant-free water-based reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene in the presence of the macroRAFT agent poly(3-vinylpyridine) (P3VP) is used to synthesize diblock copolymers with molecular weights of around 60 kDa. The proposed mechanism for the poly(3-vinylpyridine)-block-poly(styrene) (P3VP-b-PS) synthesis is the polymerization-induced self-assembly (PISA) which involves the in situ formation of well-defined micellar nanoscale objects consisting of a PS core and a stabilizing P3VP macroRAFT agent corona. The presented approach shows a well-controlled RAFT polymerization, allowing for the synthesis of diblock copolymers with high monomer conversion. The obtained diblock copolymers display microphase-separated structures according to their composition.


2020 ◽  
Vol 11 (21) ◽  
pp. 3564-3572
Author(s):  
Jing Wan ◽  
Bo Fan ◽  
Yiyi Liu ◽  
Tina Hsia ◽  
Kaiyuan Qin ◽  
...  

The first room temperature synthesis of diblock copolymer nano-objects with different morphologies using ultrasound (990 kHz) initiated reversible addition-fragmentation chain transfer PISA (sono-RAFT-PISA) in aqueous system.


2019 ◽  
Vol 10 (19) ◽  
pp. 2424-2435 ◽  
Author(s):  
Bingjie Zhao ◽  
Sen Xu ◽  
Sixun Zheng

A novel organic–inorganic ABA triblock copolymer with a poly(acrylate amide) (PAA) midblock and poly(POSS acrylate) [P(POSS)] endblocks was synthesized via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization.


2015 ◽  
Vol 6 (34) ◽  
pp. 6129-6132 ◽  
Author(s):  
Zhenzhong Liu ◽  
Gongjun Zhang ◽  
Wei Lu ◽  
Youju Huang ◽  
Jiawei Zhang ◽  
...  

Reversible addition–fragmentation chain transfer (RAFT) polymerization induced self-assembly (PISA) initiated by UV light is exploited as a new strategy to prepare polymeric nanomicelles at room temperature.


Sign in / Sign up

Export Citation Format

Share Document