scholarly journals Fabrication and Characterization of Hydrogels Based on Gelatinised Collagen with Potential Application in Tissue Engineering

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1146 ◽  
Author(s):  
Victor Perez-Puyana ◽  
Mercedes Jiménez-Rosado ◽  
Alberto Romero ◽  
Antonio Guerrero

Regenerative medicine is increasingly focused on the development of biomaterials that facilitate cell adhesion and proliferation through the use of natural polymers, which have better biocompatibility and biodegradability. In this way, the use of hydrogels has been considered as a potential option for tissue engineering due to their physical and chemical characteristics. However, few studies associate the raw materials properties and processing conditions with the final characteristics of hydrogels, which could condition their use as scaffolds for tissue engineering. In this context, the main objective of this work was the evaluation of type I collagen as raw material for the elaboration of hydrogels. In addition, gelation time, pH and temperature were evaluated as the most influential variables in the hydrogel processing method by rheological (time, strain and frequency sweep tests) and microstructural (Cryo-SEM) measurements. The results indicate that it is possible to obtain collagen hydrogels with adequate rheological and microstructural characteristics by selecting optimal processing conditions. However, further studies are necessary to assess their suitability for cell accommodation and growth.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3719 ◽  
Author(s):  
Giorgia Montalbano ◽  
Giorgia Borciani ◽  
Carlotta Pontremoli ◽  
Gabriela Ciapetti ◽  
Monica Mattioli-Belmonte ◽  
...  

In the last years bone tissue engineering has been increasingly indicated as a valid solution to meet the challenging requirements for a healthy bone regeneration in case of bone loss or fracture. In such a context, bioactive glasses have already proved their great potential in promoting the regeneration of new bone tissue due to their high bioactivity. In addition, their composition and structure enable us to incorporate and subsequently release therapeutic ions such as strontium, enhancing the osteogenic properties of the material. The incorporation of these inorganic systems in polymeric matrices enables the formulation of composite systems suitable for the design of bone scaffolds or delivery platforms. Among the natural polymers, type I collagen represents the main organic phase of bone and thus is a good candidate to develop biomimetic bioactive systems for bone tissue regeneration. However, alongside the specific composition and structure, the key factor in the design of new biosystems is creating a suitable interaction with cells and the host tissue. In this scenario, the presented study aimed at combining nano-sized mesoporous bioactive glasses produced by means of a sol–gel route with type I collagen in order to develop a bioactive hybrid formulation suitable for bone tissue engineering applications. The designed system has been fully characterized in terms of physico-chemical and morphological analyses and the ability to release Sr2+ ions has been studied observing a more sustained profile in presence of the collagenous matrix. With the aim to improve the mechanical and thermal stability of the resulting hybrid system, a chemical crosslinking approach using 4-star poly (ethylene glycol) ether tetrasuccinimidyl glutarate (4-StarPEG) has been explored. The biocompatibility of both non-crosslinked and 4-StarPEG crosslinked systems was evaluated by in vitro tests with human osteoblast-like MG-63 cells. Collected results confirmed the high biocompatibility of composites, showing a good viability and adhesion of cells when cultured onto the biomaterial samples.


2012 ◽  
Vol 506 ◽  
pp. 138-141
Author(s):  
K. Theerakittayakorn ◽  
T. Bunprasert

Human dermis was used as a new source of raw material for tissue engineering scaffold fabrication. Three human dermal solutions were prepared from different fractions after centrifugation and denoted as DS-1, DS-2 and DS-3. Approximately, the ratios of sulfated GAGs to collagen were 0.03, 0.02 and 0.04 for DS-1, DS-2 and DS-3, respectively. Scaffolds from the human dermal solutions and the commercial bovine type I collagen (Sigma®, St. Louis, MO, USA) were fabricated. The scaffolds were submerged in the normal culture medium and the calcium depositions were determined at day 1, 7 and 21. The highest calcium deposit was found in the scaffolds from type I collagen, the second were the scaffolds from DS-2, the third were the scaffolds from DS-1 and the lowest were the scaffolds from DS-3 for all time points. Histological sections stained with von Kossa stain explicitly exhibit the calcium depositions in the scaffolds. The calcium deposited in a manner according to the sulfated GAGs/collagen ratios of the scaffold materials. Calcium deposits are naturally incoperated into the collagen matrix of the human dermal solution-derived scaffolds. In bone tissue engineering, interpretation of experimental results should be careful of the spontaneous calcium deposition in scaffolds from collagen.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 36-39 ◽  
Author(s):  
Ugo Ripamonti ◽  
Nicolaas Duneas

Recent advances in materials science and biotechnology have given birth to the new and exciting field of tissue engineering, in which the two normally disparate fields are merging into a profitable matrimony. In particular the use of biomaterials capable of initiating new bone formation via a process called osteoinduction is leading to quantum leaps for the tissue engineering of bone.The classic work of Marshall R. Urist and A. Hari Reddi opened the field of osteoinductive biomaterials. Urist discovered that, upon implantation of devitalized, demineralized bone matrix in the muscle of experimental animals, new bone formation occurs within two weeks, a phenomenon he described as bone formation by induction. The tissue response elicited by implantation of demineralized bone matrix in muscle or under the skin includes activation and migration of undifferentiated mesenchymal cells by chemotaxis, anchoragedependent cell attachment to the matrix, mitosis and proliferation of mesenchymal cells, differentiation of cartilage, mineralization of the cartilage, vascular invasion of the cartilage, differentiation of osteoblasts and deposition of bone matrix, and finally mineralization of bone and differentiation of marrow in the newly developed ossicle.The osteoinductive ability of the extracellular matrix of bone is abolished by the dissociative extraction of the demineralized matrix, but is recovered when the extracted component, itself inactive, is reconstituted with the inactive residue—mainly insoluble collagenous bone matrix. This important experiment showed that the osteoinductive signal resides in the solubilized component but needs to be reconstituted with an appropriate carrier to restore the osteoinductive activity. In this case, the carrier is the insoluble collagenous bone matrix—mainly crosslinked type I collagen.


2020 ◽  
Vol 115 (11) ◽  
pp. 399-408
Author(s):  
Catherine Maidment ◽  
Meekyung Ahn ◽  
Rafea Naffa ◽  
Trevor Loo ◽  
Gillian Norris

Looseness is a defect found in leather that reduces its quality by causing a wrinkly appearance in the finished product, resulting in a reduction in its value. Earlier studies on loose leather using microscopy and Raman spectroscopy reported a change in the collagen structure of loose leather. In this study, proteomics was used to investigate the possible molecular causes of looseness in the raw material, the first time such a study has been carried out. Proteins extracted from two regions of raw hide using two different methods were analysed; those taken from the distal axilla, an area prone to looseness, and those taken from the backbone which is less prone to looseness. Analyses using 1DE-LC-MS/MS showed that although the overall collagen concentration was similar in both areas of the hide, the distribution of the different types of collagen differed.  Specifically, concentrations of type I collagen, and the collagen-associated proteoglycan decorin were lower in samples taken from the distal axilla, symptomatic of a collagen network with excess space seen for these samples using confocal microscopy. This study suggests a possible link between the molecular components of raw cattle hide and looseness and more importantly between the molecular components of skin and skin defects. There is therefore potential to develop biomarkers for looseness which will enable early preventative action.


2004 ◽  
Vol 29 (4) ◽  
pp. 370
Author(s):  
Gwang-Hee Lee ◽  
Sung-Yoon Huh ◽  
Sang-Hyuk Park

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 206
Author(s):  
Bianca Lok ◽  
Gunnar Mueller ◽  
Johannes Ganster ◽  
Jens Erdmann ◽  
Andrea Buettner ◽  
...  

The still-rising global demand for plastics warrants the substitution of non-renewable mineral oil-based resources with natural products as a decisive step towards sustainability. Lignin is one of the most abundant natural polymers and represents an ideal but hitherto highly underutilized raw material to replace petroleum-based resources. In particular, the use of lignin composites, especially polyolefin–lignin blends, is currently on the rise. In addition to specific mechanical property requirements, a challenge of implementing these alternative polymers is their heavy odor load. This is especially relevant for lignin, which exhibits an intrinsic odor that limits its use as an ingredient in blends intended for high quality applications. The present study addressed this issue by undertaking a systematic evaluation of the odor properties and constituent odorants of commercially available lignins and related high-density polyethylene (HDPE) blends. The potent odors of the investigated samples could be attributed to the presence of 71 individual odorous constituents that originated primarily from the structurally complex lignin. The majority of them was assignable to six main substance classes: carboxylic acids, aldehydes, phenols, furan compounds, alkylated 2-cyclopenten-1-ones, and sulfur compounds. The odors were strongly related to both the lignin raw materials and the different processes of their extraction, while the production of the blends had a lower but also significant influence. Especially the investigated soda lignin with hay- and honey-like odors was highly different in its odorant composition compared to lignins resulting from the sulfurous kraft process predominantly characterized by smoky and burnt odors. These observations highlight the importance of sufficient purification of the lignin raw material and the need for odor abatement procedures during the compounding process. The molecular elucidation of the odorants causing the strong odor represents an important procedure to develop odor reduction strategies.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 87-91 ◽  
Author(s):  
Jiankang Zhou ◽  
Kun Zhang ◽  
Shanshan Ma ◽  
Tengfei Liu ◽  
Minghao Yao ◽  
...  

AbstractIn the past few decades, stem cell transplantation has been generally accepted as an effective method on the treatment of tissue and organ injury. However, the insufficient number of transplanted stem cells and low survival rate that caused by series of negative conditions limit the therapeutic effect. In this contribution, we developed an injectable hydrogel composed of sodium alginate (SA) and Type I collagen (ColI), as the tissue scaffold to create better growth microenvironment for the stem cells. Compared the traditional SA scaffold, the ColI/SA hydrogel inherits its biomimetic properties, and simultaneously has shorter gelation time which means less loss of the transplanted stem cells. The mesenchyma stem cell (MSC) culture experiments indicated that the ColI/SA hydrogel could prevent the MSC apoptosis and contributed to faster MSC proliferation. It is highlighted that this ColI/SA hydrogel may have potential application for tissue regeneration and organ repair as the stem cell scaffold.


2019 ◽  
Vol 43 (4) ◽  
pp. 2002-2010 ◽  
Author(s):  
Bo Zheng ◽  
Caiyun Mao ◽  
Tianyi Gu ◽  
Haihua Pan ◽  
Changyu Shao ◽  
...  

This novel biomimetic mineralization technique provides an efficient method to produce an advanced mineralized matrix.


2016 ◽  
Vol 4 (2) ◽  
pp. 318-326 ◽  
Author(s):  
R. Ravichandran ◽  
M. M. Islam ◽  
E. I. Alarcon ◽  
A. Samanta ◽  
S. Wang ◽  
...  

Modulating the hydrogel properties from injectable to implantable scaffolds using the bio-orthogonal thiol-Michael addition click reaction.


Sign in / Sign up

Export Citation Format

Share Document