scholarly journals Competition between Structural Relaxation and Crystallization in the Glass Transition Range of Random Copolymers

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1778
Author(s):  
Jürgen E. K. Schawe ◽  
Claus Wrana

Structural relaxation in polymers occurs at temperatures in the glass transition range and below. At these temperatures, crystallization is controlled by diffusion and nucleation. A sequential occurrence of structural relaxation, nucleation, and crystallization was observed for several homopolymers during annealing in the range of the glass transition. It is known from the literature that all of these processes are strongly influenced by geometrical confinements. The focus of our work is copolymers, in which the confinements are caused by the random sequence of monomer units in the polymer chain. We characterize the influence of these confinements on structure formation and relaxation in the vicinity of the glass transition. The measurements were performed with a hydrogenated nitrile-butadiene copolymer (HNBR). The kinetics of the structural relaxation and the crystallization was measured using fast differential scanning calorimetry (FDSC). This technique was selected because of the high sensitivity, the fast cooling rates, and the high time resolution. Crystallization in HNBR causes a segregation of non-crystallizable segments in the macromolecule. This yields a reduction in mobility in the vicinity of the formed crystals and as a consequence an increased amount of so-called “rigid amorphous fraction” (RAF). The RAF can be interpreted as self-assembled confinements, which limit and control the crystallization. An analysis of the crystallization and the relaxation shows that the kinetic of both is identical. This means that the Kohlrausch exponent of relaxation and the Avrami exponent of crystallization are identical. Therefore, the crystallization is not controlled by nucleation but by diffusion and is terminated by the formation of RAF.

2007 ◽  
Vol 555 ◽  
pp. 497-502
Author(s):  
Dejan Miličević ◽  
S. Trifunović ◽  
N. Ignjatović ◽  
E. Suljovrujić

Hydroxyapatite/poly L-lactide (HAp/PLLA) is a composite biomaterial which has been widely utilized for substitution and reparation of the hard bone tissue. It is well known that gamma irradiation has been successfully employed in the modification/sterilization of such porous composites and that it has advantages over other procedures. In this study, differential scanning calorimetry (DSC) measurements were made to investigate the influence of the radiation on glass transition behavior and structural relaxation, as well as to estimate the activation energy for this process. The apparent activation energy ΔH* for structural relaxation in the glass transition region was determined on the basis of the heating rate dependence of the glass transition temperature Tg. Furthermore, the results were correlated with those obtained by gel permeation chromatography (GPC). Our findings support the fact that the radiation-induced chain scission in the PLLA phase is the main reason for the decrease of the glass transition temperature and/or activation energy with the absorbed dose.


1995 ◽  
Vol 28 (5) ◽  
pp. 1516-1527 ◽  
Author(s):  
A. Alegria ◽  
E. Guerrica-Echevarria ◽  
L. Goitiandia ◽  
I. Telleria ◽  
J. Colmenero

Sign in / Sign up

Export Citation Format

Share Document