scholarly journals Fe-Doped g-C3N4: High-Performance Photocatalysts in Rhodamine B Decomposition

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1963
Author(s):  
Minh Nguyen Van ◽  
Oanh Mai ◽  
Chung Pham Do ◽  
Hang Lam Thi ◽  
Cuong Pham Manh ◽  
...  

Herein, Fe-doped C3N4 high-performance photocatalysts, synthesized by a facile and cost effective heat stirring method, were investigated systematically using powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) surface area measurement, X-ray photoelectron (XPS), UV–Vis diffusion reflectance (DRS) and photoluminescence (PL) spectroscopy. The results showed that Fe ions incorporated into a g-C3N4 nanosheet in both +3 and +2 oxidation states and in interstitial configuration. Absorption edge shifted slightly toward the red light along with an increase of absorbance in the wavelength range of 430–570 nm. Specific surface area increased with the incorporation of Fe into g-C3N4 lattice, reaching the highest value at the sample doped with 7 mol% Fe (FeCN7). A sharp decrease in PL intensity with increasing Fe content is an indirect evidence showing that electron-hole pair recombination rate decreased. Interestingly, Fe-doped g-C3N4 nanosheets present a superior photocatalytic activity compared to pure g-C3N4 in decomposing RhB solution. FeCN7 sample exhibits the highest photocatalytic efficiency, decomposing almost completely RhB 10 ppm solution after 30 min of xenon lamp illumination with a reaction rate approximately ten times greater than that of pure g-C3N4 nanosheet. This is in an agreement with the BET measurement and photoluminescence result which shows that FeCN7 possesses the largest specific surface area and low electron-hole recombination rate. The mechanism of photocatalytic enhancement is mainly explained through the charge transfer processes related to Fe2+/Fe3+ impurity in g-C3N4 crystal lattice.

2020 ◽  
Vol 96 (3) ◽  
pp. 728-741
Author(s):  
Mahtab Gorgani ◽  
Behzad Koozegar Kaleji

Abstract In this study, several TiO2 mesoporous nanoparticles with different mol% of niobium and silver were synthesized using the sol–gel method. The crystalline phase, chemical state, photocatalytic and optical properties, specific surface area, and morphology of mesoporous nanoparticles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis reflective spectroscopy (UV–Vis), Brunauer–Emmett–Teller-specific surface area (BET) and field emission scanning electron microscopy (FESEM). With increasing calcination temperature, the photocatalytic activity of the samples gradually increased due to the improvement of crystallization of the anatase and rutile phases. Nb/Ag codoping sample calcined at 550 °C has reduced the band gap energy (3.17 eV to 3.06 eV) and improved the photocatalytic properties of samples under visible light (xenon lamp, 200 W for 1 h and 2 h). Doped TiO2 mesoporous nanoparticles were shown to have the highest photocatalytic activity as compared with the pure TiO2 nanoparticles. The best photocatalytic efficiency of codoped TiO2 mesoporous nanoparticles was observed for the TNA3 sample calcined under 550 °C, containing molar contents of Nb (0.5 mol%) and Ag (1 mol%) dopant ions with 95.60% efficiency.


2011 ◽  
Vol 121-126 ◽  
pp. 1044-1048
Author(s):  
Chang Yu Li ◽  
Shou Xin Liu ◽  
Li Li Liu

Flowerlike nickel oxide was synthesized by a simple liquid-phase process to obtain the hydroxide precursor and then calcined to form the nickel oxide. The precursor and the nickel oxide were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG) , the scanning electron microscope(SEM) and Brunauer–Emmett–Teller-specific surface area measurement. The results indicated α-Nickel hydroxide was transferred to NiO with a cubic crystalline structure after being calcined at 450 °C; the NiO still kept the morphology of the precursors and the specific surface area of the NiO was 125.2m2/g.


2014 ◽  
Vol 12 ◽  
pp. 16-19
Author(s):  
J Temuujin ◽  
A Minjigmaa ◽  
B Davaabal ◽  
Z Ochirbat

Fly ash from 4th thermal power station of Ulaanbaatar city have been characterised by x-ray fluorescence (XRF), x-ray diffractometry (XRD), particle size analyzer, specific surface area measurement (BET) and scanning electron microscope (SEM) observation. It was found that fly ash from Baganuur coal contains over 15 wt.% of calcium oxide (CaO) and could be assigned as class C fly ash, according to the International classification. Specific surface area of this fly ash was 2.75 m2/g and mean particle diameter was 59.5 μm. Zeolitic compounds were synthesised by using mixture of this fly ash and a transition aluminium oxide under hydrothermal treatment at 100, 150 and 200°C temperatures for a different duration. Various zeolitic compounds including Na-faujasite and sodium aluminosilicate were synthesised as reaction products.DOI: http://dx.doi.org/10.5564/mjc.v12i0.164 Mongolian Journal of Chemistry Vol.12 2011: 16-19 


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7104
Author(s):  
Hersandy Dayu Kusuma ◽  
Rochmadi ◽  
Imam Prasetyo ◽  
Teguh Ariyanto

This study explores the modification of lignin with surfactants, which can be used as a template to make mesoporous structures, and can also be used in combination with manganese oxide to produce manganese oxide/lignin-derived carbon. Organosolv extraction, using ethanol (70%) at 150 °C, was carried out to extract lignin from oil palm wood. Lignin was then mixed with Pluronic F-127, with and without Mn(NO3)2, and then crosslinked with acidic formaldehyde, resulting in a carbon precursor-based modified lignin. Carbonization was carried out at 900 °C to produce lignin-derived carbon and manganese oxide/lignin-derived carbon. The characterization materials included Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope-energy dispersive X-ray (SEM-EDX) mapping, X-ray diffraction (XRD), and N2-sorption analysis. FTIR curves displayed the vibration bands of lignin and manganese oxide. SEM images exhibited the different morphological characteristics of carbon from LS120% (lignin with a Pluronic surfactant of 120%) and LS120%Mn20% (lignin with a Pluronic of 120% and Mn oxide of 20%). Carbon LS120% (C-LS120%) showed the highest specific surface area of 1425 m2/g with a mean pore size of 3.14 nm. The largest mean pore size of 5.23 nm with a specific surface area of 922 m2/g was exhibited by carbon LS120%-Mn20% (C-LS120%-Mn20%). C-LS120%Mn20% features two phases of Mn oxide crystals. The highest specific capacitance of 345 F/g was exhibited by C-LS120%-Mn20%.


2021 ◽  
Vol 45 (12) ◽  
pp. 5712-5719
Author(s):  
Yongxiang Zhang ◽  
Peifeng Yu ◽  
Mingtao Zheng ◽  
Yong Xiao ◽  
Hang Hu ◽  
...  

Porous carbons with a high specific surface area (2314–3470 m2 g−1) are prepared via a novel KCl-assisted activation strategy for high-performance supercapacitor.


Author(s):  
Tianlong Zheng ◽  
Jing He ◽  
Pingwei Cai ◽  
Xi Liu ◽  
Duojie Wu ◽  
...  

Abstract Self-supporting three-dimensional (3D) transition metal electrodes have been considered for designing high-performance non-noble metal oxygen evolution reaction (OER) catalysts owing to their advantages such as binder-free, good mass transfer, and large specific surface area. However, the poor conductivity of ((oxy)hydr)oxides and the difficulty in adjusting their electronic structure limit their application. As an alternative strategy, instead of constituting the array electrode by the active components themselves, we herein report 3D Co(OH)2@MnO2 heterostructure decorated carbon nanoarrays grown directly on carbon paper (Co(OH)2@MnO2-CNAs). This unique structure can not only enhance electrical conductivity but also provide a larger specific surface area, and facilitate electrolyte diffusion and ion transport. The core-shell heterostructured Co(OH)2@MnO2 formed via incorporation with MnO2 facilitates the transition of CoII to CoIII in Co(OH)2 and it increases the storage of oxidative charge in the catalyst, leading to an OER activity with benchmark RuO2 and good stability. Density functional theory calculations suggest that the improved OER performance can be attributed to the formation of the heterojunction structure, resulting in the modulation of the electronic structure of Co atoms and the reduction of the free energy barrier of the rate-determining step for the OER.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151011
Author(s):  
Jingwen Jia ◽  
Longfu Wei ◽  
Ziting Guo ◽  
Fang Li ◽  
Changlin Yu ◽  
...  

Metal–organic frameworks (MOFs) are the electrocatalytic materials with large specific surface area, high porosity, controllable structure and monodisperse active center, which is a promising candidate for the application of electrochemical energy conversion. However, the electrocatalytic performance of pure MOFs is seriously limited its poor conductivity and stability. In this work, high-performance electrocatalyst was fabricated through combining NiFe/MOF on nickel foam (NF) via in-situ growth strategy. Through rational control of the time and ratio in reaction precursors, we realized the effective manipulation of the growth behavior, and further investigated the electrocatalytic performance in water splitting. The catalyst presented excellent electrocatalytic performance for water splitting, with low overpotential of 260 mV in alkaline condition at a current density of 50 mA[Formula: see text], which is benefited from the large specific surface area and active sites. This study demonstrates that the rational design of NiFe MOF/NF plays a significant role in high-performance electrocatalyst.


Sign in / Sign up

Export Citation Format

Share Document