In-situ controlled synthesis of NiFe MOF materials with excellent electrocatalytic performances for water splitting

2021 ◽  
Vol 14 (02) ◽  
pp. 2151011
Author(s):  
Jingwen Jia ◽  
Longfu Wei ◽  
Ziting Guo ◽  
Fang Li ◽  
Changlin Yu ◽  
...  

Metal–organic frameworks (MOFs) are the electrocatalytic materials with large specific surface area, high porosity, controllable structure and monodisperse active center, which is a promising candidate for the application of electrochemical energy conversion. However, the electrocatalytic performance of pure MOFs is seriously limited its poor conductivity and stability. In this work, high-performance electrocatalyst was fabricated through combining NiFe/MOF on nickel foam (NF) via in-situ growth strategy. Through rational control of the time and ratio in reaction precursors, we realized the effective manipulation of the growth behavior, and further investigated the electrocatalytic performance in water splitting. The catalyst presented excellent electrocatalytic performance for water splitting, with low overpotential of 260 mV in alkaline condition at a current density of 50 mA[Formula: see text], which is benefited from the large specific surface area and active sites. This study demonstrates that the rational design of NiFe MOF/NF plays a significant role in high-performance electrocatalyst.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3037 ◽  
Author(s):  
Wang ◽  
Su ◽  
Yu ◽  
Li ◽  
Ma ◽  
...  

We load the natural active molecules onto the spin film in an array using electrospinning techniques. The electrospun active molecular membranes we obtain in optimal parameters exhibit excellent capacity for scavenging radical. The reaction capacity of three different membranes for free radicals are shown as follow, glycyrrhizin acid membrane > quercetin membrane > α-mangostin membrane. The prepared active molecular electrospun membranes with a large specific surface area and high porosity could increase the interaction area between active molecules and free radicals. Additionally, it also has improved anti-airflow impact strength, anti-contaminant air molecular interference ability, and the ability to capture free radicals.


Author(s):  
Lei Zhao ◽  
Ziwei Lan ◽  
Junyu Su ◽  
Huazhu Liang ◽  
Jiayu Yao ◽  
...  

Compared with precious metal catalysts, non-platinum catalysts have the advantages of low cost and high performance. Among them, the activated carbon (AC) with a large specific surface area (SSA) can be used as a carrier or as a carbon source of nonprecious metal/carbon system catalyst at the same time. Therefore, this paper uses cheap pine peel bio-based materials to prepare large surface area activated carbon and then compound with cobalt phthalocyanine (CoPc) to obtain a high-performance cobalt/nitrogen/carbon catalyst. The merits include AC@CoPc composite catalysts are prepared by precisely controlling the composite proportion of AC and CoPc, the atomically dispersed Co nanoparticles form and synergistically with N promote the exposure of CoNx active sites, and the Eonset of the catalyst treated with a composite proportion of AC and CoPc of 1 to 2 at 800 °C (AC@CoPc-800-1-2) is 1.01 V, which is higher than Pt/C (20 wt%) catalyst. Apart from this, the stability is 87.8% in 0.1 M KOH after 20000 s testing in compared with other AC@CoPc series catalysts and Pt/C (20 wt%) catalyst. Considering from the performance and price of the catalyst in practical application, these composite catalysts combine biomass carbon materials with phthalocyanine series, which will be widely used in the area of nonprecious metal catalysts.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kangli Xu ◽  
Lei Zhan ◽  
Rui Yan ◽  
Qinfei Ke ◽  
Anlin Yin ◽  
...  

Nanofibre membranes with small diameter and large specific surface area are widely used in filtration fields due to their small pore size and high porosity. To date, aramid nanofibres (ANFs)...


2020 ◽  
Vol 13 (06) ◽  
pp. 2051038
Author(s):  
Jianxia Zhang ◽  
Li Liu ◽  
Xiaonian Tang ◽  
Dan Sun ◽  
Chunxia Tian ◽  
...  

High porosity [Formula: see text]-Fe2O3 has attracted a lot of attention due to its exceptional structure. In this paper, nanoflake assembled hierarchical porous flower-like [Formula: see text]-Fe2O3 was prepared by hydrothermal and calcination methods without any additional templates. Scanning electron microscopy (SEM) morphological characterization results show that with the increase of calcination temperature (400∘C, 450∘C, 500∘C, 550∘C, 600∘C), pores appeared. However, the results of nitrogen adsorption show that the specific surface area of the [Formula: see text]-Fe2O3 reaches the maximum value (52.19[Formula: see text]m2/g) when the calcination temperature is 500∘C. The gas sensing performance of flower-like [Formula: see text]-Fe2O3 with different calcination temperature is compared, interestingly, with the increase of calcination temperature, the response of the samples increased first and then decreased, and reached the maximum value (44.2–100 parts per million (ppm) acetone) when the calcination temperature was 500∘C. The minimum concentration for acetone was 200 ppb (response value is 2.0). Moreover, calcined at 500∘C, hierarchical porous [Formula: see text]-Fe2O3 has a fast response recovery (4/25 s) and low working temperature (210∘C). These excellent gas sensing properties are mainly due to porous structure, large specific surface area, and oxygen vacancies on the surface, which make it a promising material for acetone sensors.


Sign in / Sign up

Export Citation Format

Share Document