scholarly journals Size-Controlled Transformation of Cu2O into Zero Valent Copper within the Matrix of Anion Exchangers via Green Chemical Reduction

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2629
Author(s):  
Irena Jacukowicz-Sobala ◽  
Ewa Stanisławska ◽  
Agnieszka Baszczuk ◽  
Marek Jasiorski ◽  
Elżbieta Kociołek-Balawejder

Composite materials containing zero valent copper (ZVC) dispersed in the matrix of two commercially available strongly basic anion exchangers with a macroreticular (Amberlite IRA 900Cl) and gel-like (Amberlite IRA 402OH) structure were obtained. Cu0 particles appeared in the resin phase as the product of the reduction of the precursor, i.e., copper oxide(I) particles previously deposited in the two supporting materials. As a result of a one-step transformation of preformed Cu2O particles as templates conducted using green reductant ascorbic acid and under mild conditions, macroporous and gel-type hybrid products containing ZVC were obtained with a total copper content of 7.7 and 5.3 wt%, respectively. X-ray diffraction and FTIR spectroscopy confirmed the successful transformation of the starting oxide particles into a metallic deposit. A scanning electron microscopy study showed that the morphology of the deposit is mainly influenced by the type of matrix exchanger. In turn, the drying steps were crucial to its porosity and mechanical resistance. Because both the shape and size of copper particles and the internal structure of the supporting solid materials can have a decisive impact on the potential applications of the obtained materials, the results presented here reveal a great possibility for the design and synthesis of functional nanocrystalline solids.

Clay Minerals ◽  
2007 ◽  
Vol 42 (1) ◽  
pp. 21-43 ◽  
Author(s):  
G. Giorgetti ◽  
F. S. Aghib ◽  
K. J. T. Livi ◽  
A.-C. Gaillot ◽  
T. J. Wilson

AbstractA scanning and transmission electron microscopy study has been performed on Oligocene glacio-marine sediments, Devonian sandstones, and Jurassic dolerites recovered during CRP-3 drilling in the Ross Sea (Antarctica). Newly formed clay minerals occur in the rock matrices and as fillings in veins and faults which crosscut the whole sequence. Authigenic clays in sediments consist of beidellite-montmorillonite, berthierine/chlorite intergrowths and illite. Al,K-rich smectites and kaolinite occur in the Devonian sandstones. Saponite, berthierine/chlorite intergrowths, and Fe-hydroxides develop in the altered dolerites. Hence, the composition of the secondary phases depends also on the geochemistry of the rock they grow in. Within each sample, the same authigenic minerals form in the matrix and in the vein/fault. Clays precipitated from fluids, with variable fO2 values, which circulated in the system during the contemporaneous diagenetic and faulting events.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Sharvan Kumar ◽  
Padam Jain ◽  
Seong Woong Kim ◽  
Frank Stein ◽  
Martin Palm

AbstractThe microstructure in a Co-rich, Co-15 at.% Nb alloy was characterized in the as-cast condition. A predominantly lamellar eutectic morphology composed of a Co-Nb solid solution and the C15 Laves phase NbCo2 was confirmed by transmission electron microscopy. The C15 phase was heavily twinned, with only one variant of twins being present in the individual lamella, while the Co solid solution had the face centered cubic structure. In-situ heating to 600°C in the microscope confirmed the decomposition of the metastable Laves phase into a fine equiaxed, ˜10-20 nm grain size microstructure, and the product phase is the monoclinic Nb2Co7. The individual grains appear faulted. The matrix solid solution retained the fcc structure and no change in structure was observed on cooling to room temperature. Heating to temperatures as high as 1130°C leads to rapid grain growth in the Nb2Co7 phase, and the nucleation and growth of a few new grains within the original grains; however, the reverse peritectoid transformation previously reported, was not observed.


1989 ◽  
Vol 4 (3) ◽  
pp. 515-520 ◽  
Author(s):  
R. Ramesh ◽  
G. Thomas ◽  
R. L. Meng ◽  
P. H. Hor ◽  
C. W. Chu

An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd–Ba–Cu–O superconductor alloy. The GdBa2Cu3O7−x phase in the oxygen annealed sample is orthorhombic while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the [001] zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.


Author(s):  
A. Christou ◽  
R.W. Lowry

The details of the precipitation hardening mechanisms have been studied previously. Peters and Cupp have measured the kinetics of precipitation in an 18 pet Ni-Co-Mo steel. Hardy and Heal have studied the reversion processes caused by annealing for short times at temperatures above the aging temperature. This paper reports studies of the pre-precipitation and reversion stages in an 18 pct. Ni-Co-Mo steel (maraging with .46 pct Ti).The annealed microstructure of the parent steel consists of BCC martensitic grains. Within the matrix lies a fairly high density of dislocations whose configurations appear irregular. These dislocations are nucleation sites and are shown in Figure 1.


2013 ◽  
Vol 592-593 ◽  
pp. 708-711
Author(s):  
Stanisław Mroziński ◽  
Grzegorz Golański ◽  
Krzysztof Werner

The paper presents the results of research on the changes in microstructure of GX12CrMoVNbN9-1 cast steel subject to aging at the temperature of 600°C and holding time of 8000 hours, followed by low-cycle fatigue. The characteristics of the microstructure of the examined cast steel after ageing and low-cycle fatigue was described using transmission electron microscopy (study of the dislocation microstructure) and morphology of precipitations. It has been shown that low cycle fatigue leads to the matrix softening as a result of the processes of recovery, polygonization and repolygonization. Moreover, the processes of precipitation of Laves phase and coagulation of M23C6 carbides were observed in the microstructure. Intensity of these processes depended not only on the temperature of fatigue tests, but also on the level of total strain amplitude εac.


2000 ◽  
Vol 650 ◽  
Author(s):  
A C Nicol ◽  
M L Jenkins ◽  
M A Kirk

ABSTRACTWe present results of a weak-beam transmission electron microscopy study of “matrix damage” in two nearly-pure irons (designated alloys 1A and 2A) produced by neutron irradiation to a fluence of 0.06 dpa at 280°C. The matrix damage in both materials was found to consist of small (2-6 nm) dislocation loops. About 80 % have Burgers vectors b = a<100>, and the remainder have b = a/2<111>. The loops in alloy 1A have a mean image size dmean = 2.8± 0.1 nm and a mean maximum image size dmax = 4.2± 0.3 nm, while those in 2A have d mean = 3.4± 0.1 nm and d max = 4.5± 0.3 nm. The number densities are about 8.5 × 1021 m−3 in alloy 1A, and 6.6 × 1021 m−3 in 2A. It can be shown that the loops can account for the observed irradiation hardening. At least some loops are stable under thermal annealing to temperatures of at least 430°C. This and other indirect evidence suggests that their nature is interstitial.


2013 ◽  
Vol 19 (1) ◽  
pp. 254-260 ◽  
Author(s):  
Claira Arul Aruldass ◽  
Mani Maran Marimuthu ◽  
Surash Ramanathan ◽  
Sharif Mahsufi Mansor ◽  
Vikneswaran Murugaiyah

AbstractMesua ferrea is traditionally used for treating bleeding piles, fever, and renal diseases. It has been reported to have antimircobial activity. In the present study, antibacterial efficacy of leaf and fruit extracts on the growth and morphology of Staphylococcus aureus is evaluated. Both extracts display good antibacterial activity against S. aureus with a minimum inhibition concentration of 0.048 mg/mL. Both extracts are bacteriostatic at a minimum bacteriostatic concentration of 0.39 mg/mL. The bacteriostatic activity lasts for 24 h, and then cells start to grow as normal as shown in time-kill analysis. Scanning electron microscopy study indicated potential detrimental effect of the extracts of leaf and fruits of M. ferrea on the morphology of S. aureus. The treatment with the extracts caused extensive lysis of the cells, leakage of intracellular constituents, and aggregation of cytoplasmic contents forming an open meshwork of the matrix.


Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


Author(s):  
Julie A. Martini ◽  
Robert H. Doremus

Tracy and Doremus have demonstrated chemical bonding between bone and hydroxylapatite with transmission electron microscopy. Now researchers ponder how to improve upon this bond in turn improving the life expectancy and biocompatibility of implantable orthopedic devices.This report focuses on a study of the- chemical influences on the interfacial integrity and strength. Pure hydroxylapatite (HAP), magnesium doped HAP, strontium doped HAP, bioglass and medical grade titanium cylinders were implanted into the tibial cortices of New Zealand white rabbits. After 12 weeks, the implants were retrieved for a scanning electron microscopy study coupled with energy dispersive spectroscopy.Following sacrifice and careful retrieval, the samples were dehydrated through a graduated series starting with 50% ethanol and continuing through 60, 70, 80, 90, 95, and 100% ethanol over a period of two days. The samples were embedded in LR White. Again a graduated series was used with solutions of 50, 75 and 100% LR White diluted in ethanol.


Sign in / Sign up

Export Citation Format

Share Document