scholarly journals Yerba Mate Extract in Microfibrillated Cellulose and Corn Starch Films as a Potential Wound Healing Bandage

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2807
Author(s):  
Meysam Aliabadi ◽  
Bor Shin Chee ◽  
Mailson Matos ◽  
Yvonne J. Cortese ◽  
Michael J. D. Nugent ◽  
...  

Microfibrillated cellulose films have been gathering considerable attention due to their high mechanical properties and cheap cost. Additionally, it is possible to include compounds within the fibrillated structure in order to confer desirable properties. Ilex paraguariensis A. St.-Hil, yerba mate leaf extract has been reported to possess a high quantity of caffeoylquinic acids that may be beneficial for other applications instead of its conventional use as a hot beverage. Therefore, we investigate the effect of blending yerba mate extract during and after defibrillation of Eucalyptus sp. bleached kraft paper by ultrafine grinding. Blending the extract during defibrillation increased the mechanical and thermal properties, besides being able to use the whole extract. Afterwards, this material was also investigated with high content loadings of starch and glycerine. The results present that yerba mate extract increases film resistance, and the defibrillated cellulose is able to protect the bioactive compounds from the extract. Additionally, the films present antibacterial activity against two known pathogens S. aureus and E. coli, with high antioxidant activity and increased cell proliferation. This was attributed to the bioactive compounds that presented faster in vitro wound healing, suggesting that microfibrillated cellulose (MFC) films containing extract of yerba mate can be a potential alternative as wound healing bandages.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 447 ◽  
Author(s):  
Fabian Ávila-Salas ◽  
Adolfo Marican ◽  
Soledad Pinochet ◽  
Gustavo Carreño ◽  
Oscar Valdés ◽  
...  

This research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids. According to the computational results, the hydrogels crosslinked with succinic, aspartic, maleic and malic acids were selected as the best candidates to be synthesized and evaluated experimentally. These four crosslinked hydrogels were prepared and characterized by FTIR, mechanical properties, SEM and equilibrium swelling ratio. The sustained release of the bioactive compounds from the film dressing was investigated in vitro and in vivo. The in vitro results indicate a good release profile for all four analyzed bioactive compounds. More importantly, in vivo experiments suggest that prepared formulations could considerably accelerate the healing rate of artificial wounds in rats. The histological studies show that these formulations help to successfully reconstruct and thicken epidermis during 14 days of wound healing. Moreover, the four film dressings developed and exhibited excellent biocompatibility. In conclusion, the novel film dressings based on hydrogels rationally designed with combinatorial and sustained release therapy could have significant promise as dressing materials for skin wound healing.


2015 ◽  
Vol 94 ◽  
pp. 39-49 ◽  
Author(s):  
A.S. Teixeira ◽  
A.S. Navarro ◽  
A.D. Molina-García ◽  
M. Martino ◽  
L. Deladino

2015 ◽  
Vol 77 ◽  
pp. 257-263 ◽  
Author(s):  
Brunna Cristina Bremer Boaventura ◽  
Renata Dias de Mello Castanho Amboni ◽  
Edson Luiz da Silva ◽  
Elane Schwinden Prudencio ◽  
Patricia Faria Di Pietro ◽  
...  

2010 ◽  
Vol 122 (3) ◽  
pp. 695-699 ◽  
Author(s):  
Santiago Isolabella ◽  
Laura Cogoi ◽  
Paula López ◽  
Claudia Anesini ◽  
Graciela Ferraro ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abubakar Amali Muhammad ◽  
Nur Aimi Syarina Pauzi ◽  
Palanisamy Arulselvan ◽  
Faridah Abas ◽  
Sharida Fakurazi

Moringa oleiferaLam. (M. oleifera) from the monogeneric familyMoringaceaeis found in tropical and subtropical countries. The present study was aimed at exploring thein vitrowound healing potential ofM. oleiferaand identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction ofM. oleiferasignificantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF) cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction ofM. oleiferacontaining Vicenin-2 compound may enhance faster wound healingin vitro.


2019 ◽  
Vol 41 (1) ◽  
pp. 161-173 ◽  
Author(s):  
Irene Bavasso ◽  
Maria P. Bracciale ◽  
Francesca Sbardella ◽  
Jacopo Tirillò ◽  
Fabrizio Sarasini ◽  
...  

2015 ◽  
Vol 94 ◽  
pp. 463-472 ◽  
Author(s):  
L. Deladino ◽  
A.S. Teixeira ◽  
A.S. Navarro ◽  
I. Alvarez ◽  
A.D. Molina-García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document