scholarly journals Physico-Chemical, Thermal, and Electrochemical Analysis of Solid Polymer Electrolyte from Vegetable Oil-Based Polyurethane

Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Siti Rosnah Mustapa ◽  
Min Min Aung ◽  
Marwah Rayung

In this paper, we report the preparation of bio-based polyurethane (PU) from renewable vegetable oil. The PU was synthesized through the reaction between jatropha oil-based polyol and isocyanate in a one-shot method. Then, lithium perchlorate (LiClO4) salt was added to the polyurethane system to form an electrolyte film via a solution casting technique. The solid polymer electrolyte was characterized through several techniques such as nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), electrochemical studies, thermal studies by differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The NMR analysis confirmed that the polyurethane was successfully synthesized and the intermolecular reaction had occurred in the electrolytes system. The FTIR results show the shifting of the carbonyl group (C=O), ether and ester group (C–O–C), and amine functional groups (N–H) in PU–LiClO4 electrolytes compared to the blank polyurethane, which suggests that interaction occurred between the oxygen and nitrogen atom and the Li+ ion as they acted as electron donors in the electrolytes system. DSC analysis shows a decreasing trend in glass transition temperature, Tg and melting point, Tm of the polymer electrolyte as the salt content increases. Further, DMA analysis shows similar behavior in terms of Tg. The ionic conductivity increased with increasing salt content until the optimum value. The dielectric analysis reveals that the highest conducting electrolyte has the lowest relaxation time. The electrochemical behavior of the PU electrolytes is in line with the Tg result from the thermal analysis.

2014 ◽  
Vol 17 (3) ◽  
pp. 147-152 ◽  
Author(s):  
P. M. Shyly ◽  
S. Dawn Dharma Roy ◽  
Paitip Thiravetyan ◽  
S. Thanikaikarasan ◽  
P. J. Sebastian ◽  
...  

Polymer electrolyte membranes find application in a variety of fields such as battery systems, fuel cells, sensors and other electrochemical devices. In this paper we have done some investigations on the effect of chitin nanofiber (CNF) in PMMA based solid polymer electrolyte systems. CNF was synthesized from shrimp cell chitin by stepwise purification and acid hydrolysis method. PMMA basedelectrolyte films containing different concentrations of lithium salt and CNFs as filler were prepared by hot-press membrane technique. Crystalline nature and phase changes in polymer electrolytes were confirmed by X-ray diffraction analysis. Thermal behavior of the polymer electrolyte systems was studied by differential scanning calorimetry. Ionic conductivities of the electrolytes have been determined using a.c. impedance analysis in the temperature range between 303 and 393K. The temperature–dependent ionic conductivity


2017 ◽  
Vol 6 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Reda Khalil ◽  
Eslam Mohamed Sheha ◽  
Alaa Eid

In the present work, solid polymer electrolyte using poly(vinyl alcohol) (PVA) and magnesium perchlorate (Mg(ClO4)2) in different compositions has been prepared by the solution-casting technique method. Surface feature of films was characterized by scanning electron microscopy (SEM) measurement. X-ray diffraction (XRD) was used to determine the complexation of the polymer with the salt. The electrophysical characteristics were measured and analyzed as dependent on the concentration, nature of the solid polymer electrolyte component and ambient temperature. A maximum ionic conductivity value of ∼10–4 S/cm at 303 K is obtained for PVA0.6/(Mg(ClO4)2)0.4 composite. The ionic transference number of Mg+2 mobile ions has been estimated by a dc polarization method. The result reveals that the conducting species are predominantly ions.


2015 ◽  
Vol 1107 ◽  
pp. 158-162
Author(s):  
Siti Fadzilah Ayub ◽  
R. Zakaria ◽  
K. Nazir ◽  
A.F. Aziz ◽  
Muhd Zu Azhan Yahya ◽  
...  

In this work, solid polymer electrolyte compose of blended 30% poly (methyl methacrylate) grafted natural rubber (MG30)-poly (ethyl methacrylate) (PEMA) polymer blend doped with Lithium trimethasulfonate (LiCF3SO3) films were prepared by solution casting technique. . FTIR analysis showed that the interactions between lithium ions and oxygen atoms occur at the carbonyl functional group C=O where there is shifting in wavenumber from 1728 cm-1 of pure blend to lower wavenumber of blended MG30-PEMA on the MMA structure in both MG30 and PEMA. DSC analysis showed miscibility of polymer blend. From Electrochemical Impedance Spectrocopy analysis, ionic conductivity increase with the increasing of salt concentration. Maximum conductivity at room temperature is 9.20 x 10-6 Scm-1 was obtained when 30 wt% of LiCF3SO3 was added into the system. Ionic conductivity temperature dependence plots found obeys the Arrhenius rule.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2090
Author(s):  
Parisa Bashiri ◽  
T. Prasada Rao ◽  
Gholam-Abbas Nazri ◽  
Ratna Naik ◽  
Vaman M. Naik

Ionic conductivity of the polyethylene oxide-LiClO4 (PEOnLiClO4) solid polymer electrolyte (SPE) films with an EO:Li ratio (n) of 10, 12, 15, as well as the hybrid composite solid polymer electrolyte (CSPE) films of PEOnLiClO4 containing 50 wt% of cubic-Li7La3Zr2O12 (LLZO) sub-micron sized particles, have been studied by varying Li-salt content in the films. The complex AC dielectric permittivity and conductivity data obtained from electrical impedance measurements were fitted using a generalized power-law, including the effects of electrode polarization applied at low AC frequencies to obtain various relaxation times. In addition to increased mechanical and thermal robustness, the CSPE films show higher values of ionic conductivity, >10−4 S/cm at room temperature compared to those of SPE films with n = 12 and 15. On the contrary, the ionic conductivity of CSPE with n = 10 decreases by a factor of three compared to the corresponding SPE film due to increased polymer structural reorientation and Li-ion pairing effects. The Vogel–Tammann–Fulcher behavior of the temperature-dependent conductivity data indicates a close correlation between the ionic conductivity and polymer segmental relaxation. The PEO12LiClO4-LLZO film shows the lowest activation energy of ~0.05 eV.


2019 ◽  
Vol 803 ◽  
pp. 98-103 ◽  
Author(s):  
Pattranuch Pongsuk ◽  
Jantrawan Pumchusak

The polymer nanocomposites of PEO-LiCF3SO3 based solid polymer electrolyte were prepared using two kinds of natural clays, which are halloysite nanotube (HNT) and montmorillonite (MMT) nanoparticle. Different contents (0, 1, 5 and 10wt %) of halloysite nanotube (HNT) and montmorillonite (MMT) nanoparticle were explored. Solid polymer electrolyte nanocomposite film was prepared by solution casting method. The ionic conductivity, crystallinity and thermal properties of solid polymer electrolyte membranes were studied by impedance spectroscopy, X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. It was found that HNT provided higher ionic conductivity for solid polymer electrolyte nanocomposite than what MMT did. The highest ionic conductivity at room temperature was found at 5% HNT as 2.068 x 10-5 S.cm-1. The ion-polymer interactions between PEO-LiCF3SO3 and natural clay nanoparticle were investigated by using Fourier transform infrared (FTIR) spectra. The PEO-LiCF3SO3-5%HNT showed good oxidative stability than PEO-LiCF3SO3 composite.


2020 ◽  
Vol 32 (2) ◽  
pp. 201-207 ◽  
Author(s):  
Ibrahim Zakariya’u ◽  
Burak Gultekin ◽  
Vijay Singh ◽  
Pramod K Singh

The prime objective of the present article is to develop an efficient supercapacitor based on polymer electrolyte doped with salt. Solution cast technique was adopted to develop a solid polymer electrolyte of polymer poly(methyl methacrylate) (PMMA) as host polymer and salt potassium hydroxide (KOH) as a dopant. Incorporation of salt increases the amorphicity and assisted in conductivity enhancement. Moreover, doping of salt increases the overall conductivity of polymer electrolyte film. Electrochemical impedance spectroscopy reveals the enhancement in conductivity (four orders of magnitude) by salt doping. Fourier transform infrared shows the complexation and composite nature of films. Polarized optical microscopy shows the reduction in crystallinity, which is further confirmed by Differential scanning calorimetry. Fabricated electrochemical double-layer supercapacitor using maximum conducting polymer—salt electrolyte and symmetric carbon nanotubes electrodes shows specific capacitance of 21.86 F g−1.


2016 ◽  
Vol 846 ◽  
pp. 510-516 ◽  
Author(s):  
Azwani Sofia Ahmad Khiar ◽  
M.R.S. Anuar ◽  
M.A. Md Parid

Solid polymer electrolyte (SPE) can be viewed as an alternative of conventional liquid electrolyte since it is easier to handle. Previous Solid polymer electrolyte (SPE) can be viewed as an alternative of conventional liquid electrolyte since it is easier to handle. In the present work, starch/chitosan-ammonium nitrate (NH4NO3) SPE has been prepared by solution casting technique. Different amount of 1-ethyl-3-methylimidazolium nitrate ([EMIM][NO3]) was added to the sample. Ionic conductivity analysis was conducted over a wide range of frequency between 50 Hz-1 MHz using impedance spectroscopy to evaluate the dielectric properties and conductivity of the sample.Sample with 15 wt% of [EMIM][NO3] has shown the highest conductivity of 7.36 x 10-5 S cm-1 at room temperature. Complex permittivity for real (εr), imaginary (εi) and electrical modulus for real (Mr) and imaginary (Mi) part was determined and plotted.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1142 ◽  
Author(s):  
Tuan Tuan. Naiwi ◽  
Min Aung ◽  
Azizan Ahmad ◽  
Marwah Rayung ◽  
Mohd Su’ait ◽  
...  

Polyurethane acrylate (PUA) from vegetable oil has been synthesized and prepared for solid polymer electrolyte. Polyol has been end-capped with Toluene 2,4-Diisocyanate (TDI) followed by hydroxylethylmethylacrylate (HEMA) in a urethanation process to produce PUA. The mixtures were cured to make thin polymeric films under UV radiation to produce excellent cured films which exhibit good thermal stability and obtain high ionic conductivity value. 3 to 15 wt. % of ethylene carbonate (EC) mixed with 25 wt. % LiClO4 was added to PUA to obtain PUA electrolyte systems. PUA modified with plasticizer EC 9 wt. % achieved the highest conductivity of 7.86 × 10−4 S/cm, and relatively improved the linear sweep voltammetry, transference number and dielectric properties. Fourier Transform Infrared Spectroscopy (FTIR) and dielectric analysis were presented. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), followed by X-ray Diffraction (XRD) and morphology have been studied. The addition of plasticizer to the polyurethane acrylate shows significant improvement in terms of the conductivity and performance of the polymer electrolyte.


Sign in / Sign up

Export Citation Format

Share Document