scholarly journals Accelerated Testing Method for Predicting Long-Term Properties of Carbon Fiber-Reinforced Shape Memory Polymer Composites in a Low Earth Orbit Environment

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1628
Author(s):  
Joon-Hyeok Jang ◽  
Seok-Bin Hong ◽  
Jin-Gyun Kim ◽  
Nam-Seo Goo ◽  
Woong-Ryeol Yu

Carbon fiber-reinforced shape memory polymer composites (CF-SMPCs) have been researched as a potential next-generation material for aerospace application, due to their lightweight and self-deployable properties. To this end, the mechanical properties of CF-SMPCs, including long-term durability, must be characterized in aerospace environments. In this study, the storage modulus of CF-SMPCs was investigated in a simulation of a low Earth orbit (LEO) environment involving three harsh conditions: high vacuum, and atomic oxygen (AO) and ultraviolet (UV) light exposure. CF-SMPCs in a LEO environment degrade over time due to temperature extremes and matrix erosion by AO. The opposite behavior was observed in our experiments, due to crosslinking induced by AO and UV light exposure in the LEO environment. The effects of the three harsh conditions on the properties of CF-SMPCs were characterized individually, using accelerated tests conducted at various temperatures in a space environment chamber, and were then combined using the time–temperature superposition principle. The long-term mechanical behavior of CF-SMPCs in the LEO environment was then predicted by the linear product of the shift factors obtained from the three accelerated tests. The results also indicated only a slight change in the shape memory performance of the CF-SMPCs.

2017 ◽  
Vol 29 (6) ◽  
pp. 1081-1087 ◽  
Author(s):  
Qiao Tan ◽  
Fengfeng Li ◽  
Liwu Liu ◽  
Hetao Chu ◽  
Yanju Liu ◽  
...  

Atomic oxygen is a dominant component of the low earth orbit and can erode most spacecraft polymeric material. In this article, the atomic oxygen erosion resistance tests of an epoxy-based shape memory polymer are carried out in a ground-based atomic oxygen simulator with a vacuum space chamber. The samples, before and after the atomic oxygen exposure, are compared in appearance, surface morphology, mass, main component, dynamical and static mechanical properties, and shape memory properties. The atomic oxygen exposure causes oxidization reaction of the material, which leads to surface roughen and mass loss, while the shape memory polymer main components remain same. The results of dynamical and static mechanical tests indicate that the atomic oxygen exposure has little effect on the storage modulus and glassy transition temperature (Tg), whereas the elongation, elastic modulus, tensile strength, and yield strength decrease since the atomic oxygen exposure gives rise to tiny cracks. The shape memory property has rarely changed since the atomic oxygen erosion is mainly located near the surface of the sample.


Author(s):  
Zaria Serfontein ◽  
Jennifer Kingston ◽  
Stephen Hobbs ◽  
Susan A. Impey ◽  
Adrianus I. Aria ◽  
...  
Keyword(s):  

2000 ◽  
Vol 47 (2-9) ◽  
pp. 707-717 ◽  
Author(s):  
R. Walker ◽  
P.H. Stokes ◽  
J.E. Wilkinson ◽  
G.G. Swinerd

Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


Author(s):  
Fei Liang ◽  
Jihua Gou ◽  
He Shen ◽  
Yunjun Xu ◽  
Bob Mabbott

Shape memory polymers (SMPs) are one of the most popular smart materials due to light weight and high elastic deformation capability. In this study, highly conductive carbon nanofibers paper (CNFP) was coated on the surface of SMP as a conductive layer for electro actuation of SMP. To overcome the drawback of low modulus and low strength of shape memory polymer (SMP), continuous carbon fiber reinforcement was also incorporated with SMP by autoclave processing. The dynamic mechanical analysis (DMA) result showed over 600% increase of storage modulus of SMP by introducing carbon fiber reinforcement. Also, the shape recovery time of SMP has been reduced over 150%, while the recovery ratio of SMP has been improved to 99% by incorporating with carbon fiber reinforcement. Additionally, the mechanical property degradation of SMP composites has been investigated after different electro actuation cycles. After 50 actuation cycles, the decrease of flexural modulus of SMP composites is negligible (< 2%), and the ultimate flexural strength of SMP composites only decreased 25%. The SMP composite shows high strength and modulus, and good durability.


2018 ◽  
Vol 20 (1) ◽  
pp. 3
Author(s):  
Osamu Odawara

Space technology has been developed for frontier exploration not only in low-earth orbit environment but also beyond the earth orbit to the Moon and Mars, where material resources might be strongly restricted and almost impossible to be resupplied from the earth for distant and long-term missions performance toward “long-stays of humans in space”. For performing such long-term space explorations, none would be enough to develop technologies with resources only from the earth; it should be required to utilize resources on other places with different nature of the earth, i.e., in-situ resource utilization. One of important challenges of lunar in-situ resource utilization is thermal control of spacecraft on lunar surface for long-lunar durations. Such thermal control under “long-term field operation” would be solved by “thermal wadis” studied as a part of sustainable researches on overnight survivals such as lunar-night. The resources such as metal oxides that exist on planets or satellites could be refined, and utilized as a supply of heat energy, where combustion synthesis can stand as a hopeful technology for such requirements. The combustion synthesis technology is mainly characterized with generation of high-temperature, spontaneous propagation of reaction, rapid synthesis and high operability under various influences with centrifugal-force, low-gravity and high vacuum. These concepts, technologies and hardware would be applicable to both the Moon and Mars, and these capabilities might achieve the maximum benefits of in-situ resource utilization with the aid of combustion synthesis applications. The present paper mainly concerns the combustion synthesis technologies for sustainable lunar overnight survivals by focusing on “potential precursor synthesis and formation”, “in-situ resource utilization in extreme environments” and “exergy loss minimization with efficient energy conversion”.


Sign in / Sign up

Export Citation Format

Share Document