scholarly journals Feasibility Analysis of Bolted Joints with Composite Fibre-Reinforced Thermoplastics

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1904
Author(s):  
Daniel Tobalina-Baldeon ◽  
Felix Sanz-Adán ◽  
Marian Martinez-Calvo ◽  
Carmelo Gómez ◽  
Inigo Sanz-Pena ◽  
...  

The use of composite materials has shown steady growth in recent years due to their excellent specific mechanical properties and the possibility to reduce the weight of vehicles without impairing their safety and comfort. Continuous fibre-reinforced thermoplastic composites (CFRTP) show dynamic, acoustic, and damping properties far superior to steel and can be recycled and repaired. Their excellent properties make CFRTP good candidates for anti-vibration and shock absorbing components, however, out-of-plane mechanical properties hinder the anchoring to the vehicle’s body by means of bolted connections. The results obtained in this study show how the maximum torque that can be applied without cracks or breakage phenomena is lower than in standard steel joints. Although the preload’s value is admissible, this one is reduced over time due to relaxation phenomena associated with the viscoelastic behaviour of thermoplastic matrix. The results obtained can be improved with the integration of metal inserts in connections’ areas. In this study, a case study of a gear mount replacing the steel core with CFRTP reinforced with inserts is carried out. The results show a reduction above 50% in weight, opening the possibility of lighter structures in the automotive sector.

2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


2018 ◽  
Vol 774 ◽  
pp. 410-415 ◽  
Author(s):  
Kazuto Tanaka ◽  
Ken Uzumasa ◽  
Tsutao Katayama

Carbon fiber reinforced thermoplastics (CFRTP) are expected to be used as a structural material for aircraft and automobiles not only for their mechanical properties such as high specific strength and high specific rigidity but also for their high recyclability and short molding time. Generally, in a composite material having a laminated structure, interlaminar delamination is often caused by an out-of-plane impact, so the interlayer property plays an important role in the mechanical properties. It has been reported that the fiber/matrix interfacial strength increases by grafting carbon nanotubes (CNT) on the carbon fiber surface. In this study, CNT grafted carbon fibers were used for reinforcement of CFRTP laminate for the improvement of impact properties of CFRTP laminates. The impact absorbed energy of the CFRTP laminate using CNT grafted carbon fibers as reinforcing fiber was higher than that using untreated CF.


2012 ◽  
Vol 188 ◽  
pp. 176-181 ◽  
Author(s):  
Werner Hufenbach ◽  
Robert Kupfer ◽  
Andreas Hornig

Due to their good mechanical properties and short cycle times during processing, textile-reinforced thermoplastic composites gain increasing relevance for high-volume lightweight applications. Beyond that, by exploiting its specific processing capabilities, this composite material enables a variety of novel manufacturing techniques, e.g. for assembling. In this paper a joining technique is presented, which utilises the meltability of the thermoplastic matrix to establish a material-adapted joining method by introducing slender metallic pins into the composite structure. The processing principle is described and structural effects in the joining zone are analysed by means of microscopy. The load bearing behaviour is characterised by tensile tests on double-lap-shear specimen.


2021 ◽  
Author(s):  
RYO HIGUCHI ◽  
SOTA OSHIMA ◽  
SHU MINAKUCHI ◽  
TOMOHIRO YOKOZEKI ◽  
TAKAHIRA AOKI

This study investigates the effect of solidification conditions on the crystallization behaviors and mechanical properties of thermoplastic resin and carbon fiber reinforced thermoplastics (CFRTP). In particular, the crystallinity, elastic modulus, plastic behavior, strength, and fracture toughness were investigated in Polyphenylene Sulfide (PPS) and CF/PPS manufactured by different cooling rates. Based on experimental results, the cooling-rate-dependent elasto-plastic constitutive law of resin was developed empirically. Finally, the homogenized simulations of CF/PPS were conducted using the developed empirical model, and predicted results were compared with experiments.


2020 ◽  
Vol 7 ◽  
pp. 10
Author(s):  
Antonios G. Stamopoulos ◽  
Luca Glauco Di Genova ◽  
Antoniomaria Di Ilio

Composite materials consisting of thermoplastic matrix are gaining the interest of both the aeronautical and the automotive industry as they comprise a series of advantages regarding their mechanical performance, their recyclability and their ability to be produced in large quantities. Nevertheless, some notable drawbacks have been noticed related to the fabrication process affecting their in-plane shear properties the characterization of which is complicated. Among the notable number of testing methods proposed throughout the years, several advantages and drawbacks were observed, mostly related to the way the load is applied, the stress uniformity and the applicability of each method to various material architectures. In the present work, the modified V-notched rail shear and the ±45° shear testing methods are applied to short and textile glass fiber reinforced thermoplastics aiming to assess the influence of both the fabrication method and the strands direction. Consecutively, the results obtained from the two different testing methods are compared revealing a relatively good agreement while, in parallel, the stress uniformity and the local failures observed on the specimens are analyzed.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Fabrizio Scarpa ◽  
Morvan Ouisse ◽  
Manuel Collet ◽  
Kazuya Saito

The work describes the manufacturing, mechanical properties, and wave propagation characteristics of a pyramidal lattice made exhibiting an auxetic (negative Poisson's ratio) behavior. Contrary to similar lattice tessellations produced using metal cores, the pyramidal lattice described in this work is manufactured using a kirigami (origami plus cutting pattern) technique, which can be applied to a large variety of thermoset and thermoplastic composites. Due to the particular geometry created through this manufacturing technique, the kirigami pyramidal lattice shows an inversion between in-plane and out-of-plane mechanical properties compared to classical honeycomb configurations. Long wavelength approximations are used to calculate the slowness curves, showing unusual zero-curvature phononic properties in the transverse plane. A novel 2D wave propagation technique based on Bloch waves for damped structures is also applied to evaluate the dispersion behavior of composite (Kevlar/epoxy) lattices with intrinsic hysteretic loss. The 2D wave propagation analysis shows evanescence directivity at different frequency bandwidths and complex modal behavior due to unusual deformation mechanism of the lattice.


2020 ◽  
Vol 41 (4) ◽  
pp. 427-435
Author(s):  
S. V Panin ◽  
◽  
Nguyen Duc Anh ◽  
L.А Kornienko ◽  
V. О Alexenko ◽  
...  

2020 ◽  
Vol 62 (7) ◽  
pp. 689-697
Author(s):  
Zulkuf Balalan ◽  
Furkan Sarsilmaz ◽  
Omer Ekinci

2018 ◽  
Vol 60 (12) ◽  
pp. 1163-1170 ◽  
Author(s):  
Tevfik Küçükömeroğlu ◽  
Semih Mahmut Aktarer ◽  
Güven İpekoğlu ◽  
Gürel Çam

Sign in / Sign up

Export Citation Format

Share Document