scholarly journals Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2017
Author(s):  
Cristina Cazan ◽  
Alexandru Enesca ◽  
Luminita Andronic

Nanocomposites with polymer matrix offer excellent opportunities to explore new functionalities beyond those of conventional materials. TiO2, as a reinforcement agent in polymeric nanocomposites, is a viable strategy that significantly enhanced their mechanical properties. The size of the filler plays an essential role in determining the mechanical properties of the nanocomposite. A defining feature of polymer nanocomposites is that the small size of the fillers leads to an increase in the interfacial area compared to traditional composites. The interfacial area generates a significant volume fraction of interfacial polymer, with properties different from the bulk polymer even at low loadings of the nanofiller. This review aims to provide specific guidelines on the correlations between the structures of TiO2 nanocomposites with polymeric matrix and their mechanical properties. The correlations will be established and explained based on interfaces realized between the polymer matrix and inorganic filler. The paper focuses on the influence of the composition parameters (type of polymeric matrix, TiO2 filler with surface modified/unmodified, additives) and technological parameters (processing methods, temperature, time, pressure) on the mechanical strength of TiO2 nanocomposites with the polymeric matrix.

2021 ◽  
pp. 096739112110239
Author(s):  
Sheedev Antony ◽  
Abel Cherouat ◽  
Guillaume Montay

Nowadays natural fibre composites have gained great significance as reinforcements in polymer matrix composites. Composite material based on a polymer matrix reinforced with natural fibres is extensively used in industry due to their biodegradability, recyclability, low density and high specific properties. A study has been carried out here to investigate the fibre volume fraction effect of hemp fibre woven fabrics/PolyPropylene (PP) composite laminates on the tensile properties and impact hammer impact test. Initially, composite sheets were fabricated by the thermal-compression process with desired number of fabric layers to obtain composite laminates with different fibre volume fraction. Uniaxial, shear and biaxial tensile tests were performed and mechanical properties were calculated. Impact hammer test was also carried out to estimate the frequency and damping parameters of stratified composite plates. Scanning Electron Microscope (SEM) analysis was performed to observe the matrix and fibre constituent defects. Hemp fabrics/PP composite laminates exhibits viscoelastic behaviour and as the fibre volume fraction increases, the viscoelastic behaviour decreases to elastic behaviour. Due to this, the tensile strength increases as the fibre content increases. On the other hand, the natural frequency increases and damping ratio decrease as the fibre volume fraction increases.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 66658-66664 ◽  
Author(s):  
Feng Liu ◽  
Ning Hu ◽  
Jianyu Zhang ◽  
Satoshi Atobe ◽  
Shayuan Weng ◽  
...  

The interfacial mechanical properties between graphene (GR) and a polymer matrix play a key role in load transfer capability for GR/polymer nanocomposites.


2016 ◽  
Vol 51 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Omid Yousefzade ◽  
Hamid Garmabi

A simple model was developed to characterize the constrained polymer chains at the interphase of amorphous/semicrystalline polymer nanocomposites based on ethylene vinyl acetate copolymer and some nanosheets such as expanded graphite, graphene and organo-modified montmorillonite. It was found that this method is a useful tool to describe the reinforcement efficiency of nanoparticles. Models were developed using dynamical mechanical thermal analysis data to identify the interphase properties. The volume fraction of constrained polymer chains shows power law relationship with filler content. Since the total volume fraction consists of the confined polymer chains at the surface of nanoparticles and in crystal lamellas, the contribution of nanosheet interphase was evaluated separately. Moreover, the thickness of constructed interphase between polymer chains and nanosheets were predicted using the filler characteristics in the polymer nanocomposites. This implies that the dispersion state of nanofiller in polymeric nanocomposites can be obtained by using this simple model.


2014 ◽  
Vol 775-776 ◽  
pp. 383-387 ◽  
Author(s):  
Renê Anísio da Paz ◽  
E.M. Araújo ◽  
L.A. Pessan ◽  
T.J.A. Melo ◽  
A.M.D. Leite ◽  
...  

The improvement in the properties of nanocomposites is achieved with a load volume fraction of up to 10% due to the very high ratio of the load aspect. Moreover, they have the advantage of being processed with conventional equipment and techniques (extrusion, injection, etc.) used for polymers. In order for the clay to be uniformly dispersed in the polymer and there to be good interaction with the polymer matrix, superficial treatments of the clays with organic salts are essential for it to become organophilic, and, thus the material obtained has better performance. In this study, it was evaluated the influence of two speeds (100 and 200 rpm) of processing and thermo mechanical properties of nanocomposites with 3% of bentonite clay prepared with two speeds and two threads. The nanocomposites showed better properties as compared to properties of polyamide 6, especially the samples heated at screw speed of 100 rpm.


2018 ◽  
Vol 163 ◽  
pp. 06006 ◽  
Author(s):  
Krystian Brasse ◽  
Tomasz Tracz ◽  
Tomasz Zdeb ◽  
Piotr Rychlewski

The paper discusses the results of mechanical and technological tests of soil-cement composites made with cohesive soil. The compositions of analysed soil-cement mixtures differed in terms of their cement paste volume fractions and water-cement ratios. Limiting values of these technological parameters that enable the application of the soil-cement mixtures obtained in real life conditions for the purposes of the Deep Soil Mixing (DSM) method were determined. Based on the test results obtained, it was found that mechanical properties of the materials analysed were very sensitive to changes in their compositions. Variations in the volume fraction of cement paste within the range analysed caused mechanical properties to change even by an order of magnitude.


1994 ◽  
Vol 370 ◽  
Author(s):  
Gebran N. Karam

AbstractThe area and properties of the fiber-matrix interface in fiber reinforced cements and concretes determines the amount of stress transferred forth and back between the cement paste and the reinforcement and hence controls the mechanical properties of the composite. Fiber-fiber interaction and overlap of fibers with fibers, voids and aggregates can dramatically decrease the efficiency of the reinforcement by reducing this interfacial area. A simple model to account for this reduction is proposed and ways to integrate it in the models describing the mechanical properties of short fiber reinforced concretes are presented. The parameters of the model are evaluated from previously published data sets and its predictions are found to compare well with experimental observations; for example, it is able to predict the non-linear variation of bending and tensile strength with increasing fiber volume fraction as well as the existence of an optimal fiber content.


Author(s):  
James Han ◽  
Yu-Fu Ko ◽  
Hsien-Yang Yeh

Longitudinal elastic mechanical behavior of the armchair and zigzag single-walled carbon nanotubes (SWCNTs) and the SWCNTs reinforced polymer nanocomposites are investigated. Finite element analysis (FEA) models of the SWCNTs and the SWCNTs reinforced polymer nanocomposites are developed utilizing multiscale modeling technique along with molecular structural mechanics (MSM), which provides material properties at molecular scale and establishes relations between the steric potential energy and the classic structural mechanics. Material properties of C-C bond were obtained using multiscale-based modeling method with the consideration of shear deformation. In addition, for the interphase layer interaction between the carbon molecules of SWCNTs and the molecules of polymer matrix, multiscale-based modeling method was utilized to obtain the stiffness of nonlinear spring elements representing the van der Waals interaction. It is observed that the mechanical behavior of the SWCNTs reinforced polymer nanocomposites is dictated by the mechanical behavior of the SWCNTs embedded in the polymer matrix. Furthermore, varying radius and length of the SWCNTs would affect the longitudinal elastic mechanical properties of the SWCNTs reinforced polymer nanocomposites. Specifically, the simulation results had demonstrated that longitudinal elastic mechanical properties of the SWCNTs reinforced polymer nanocomposites would vary due to different loading conditions applied, i.e., discrete and continuous loading conditions.


Author(s):  
Ibrahim A. Atiyah

The using of polymer matrix composite materials has found a wide range of applications in our modern day world. This is as a result of the combination of characteristics which are achieved by these materials. This work aimed on the preparation of polymeric-matrix composite material in order to improve its mechanical properties by using more than one type of reinforcement with different volume fraction values. This composite materials prepared from unsaturated polyester resin as a matrix, reinforced by E-glass fiber with (5%) volume fraction and graphite particles of (1%, 3%, 5%,7% and 10%) volume fractions, and study  the effect of these fillers on the  properties of polyester. The reinforcing by different types of materials with different values of volume fraction led to improve the mechanical properties (i.e. tensile strength, modules of elasticity and hardness) significantly, because of the contribution of both graphite particles and glass fibers to bear the applied load, also due to the high hardness graphite particles  


2008 ◽  
Vol 141-143 ◽  
pp. 551-555 ◽  
Author(s):  
Hong Yan ◽  
Shi Bao Lingli ◽  
Wei Pan

SiCp/AZ61 composites were fabricated by a semi-solid stirring method. The effects of volume fraction of SiC particles, stirring temperature and stirring time on the mechanical properties of SiCp/AZ61composites were studied with an orthogonal experimental method. The results indicate that volume fraction of SiC particles has a remarkable influence on the mechanical properties of SiCp/AZ61 composites, the second were stirring time and stirring temperature. In this experiment condition, the optimum technological parameters of SiCp/AZ61 composites fabricated by semi-solid stirring method were volume fraction of SiC particles 6%, stirring temperature 595°C and stirring time 5 min. Fractographies show that the fracture morphology of SiCp/AZ61 composites with volume fraction of SiC particles 6% is brittle.


Sign in / Sign up

Export Citation Format

Share Document