scholarly journals Surface Finishing of FDM-Fabricated Amorphous Polyetheretherketone and Its Carbon-Fiber-Reinforced Composite by Dry Milling

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2175
Author(s):  
Cheng Guo ◽  
Xiaohua Liu ◽  
Guang Liu

In recent years, many investigations have been devoted to fused deposition modeling (FDM) of high-performance polymer-polyetheretherketone (PEEK) and carbon-fiber-reinforced PEEK (CF/PEEK) for biomedical and aerospace applications. However, the staircase effect naturally brought about by FDM restricts further applications of 3D-printed PEEK and its composites in high-temperature molds, medical implants, and precision components, which require better or customized surface qualities. Hence, this work aimed to reduce the staircase effect and improve the surface quality of 3D-printed PEEK and CF/PEEK parts by dry milling of the fluctuant exterior surface. The co-dependency between 3D printing parameters (raster angle and layer thickness) and milling parameters (depth of cut, spindle speed, and feed rate per tooth) were investigated through experiments. The difference in removal mechanisms for PEEK and CF/PEEK was revealed. It was confirmed that the smearing effect enhanced the surface quality based on the morphology analysis and the simulation model. Both the raster angle of +45°/−45° and the small layer thickness could improve the surface quality of these 3D-printed polymers after dry milling. A large depth of cut and a large feed rate per tooth were likely to deteriorate the finished polymer surface. The spindle speed could influence the morphologies without significant changes in roughness values. Finally, a demonstration was performed to verify that dry milling of 3D-printed amorphous PEEK and CF/PEEK parts could lead to a high surface quality for critical requirements.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


2015 ◽  
Vol 1105 ◽  
pp. 93-98
Author(s):  
Adnan I.O. Zaid ◽  
S.M.A. Al-Qawabah

Shape memory alloys (SMAs) are now widely used in many industrial and engineering applications e.g. in aircrafts, space vehicles, robotics and actuators. However the available literature reveals that little or no work is published on the machinability of these alloys. In this paper, the effect of the main cutting parameters namely: cutting speed, depth of cut and feed rate on the surface quality of the machined surface of the Cu-Zn-Al shape memory alloy both in the cast and after direct extrusion using a CNC milling is investigated. The cutting speed was varied from 750 to 2000 rpm , the depth of cut was varied from 1 to 4 mm and the feed rate was varied from 100 to 250 mm/min. Furthermore, the general microstructure, the mechanical behavior and hardness of the Cu-Zn-Al shape memory alloy both in the cast and after direct extrusion are determined and discussed. It was found that the best achieved surface quality in this SMA, machined within the different investigated cutting conditions is 0.13 microns at cutting speed of 750 rpm, 1 mm depth of cut and 150 mm/min. feed rate, which is better than the surface quality achieved in other materials at the same cutting conditions.


This research is a study of the turning process by testing with brass material. There are three control factors: spindle of speed, feed rate, and depth of cut respectively. The turning process requires variable control,affect the quality of production productivity and production costplanning an experiment with the Taguchi Method help in theexperiment the analysis of variance, orthogonal array, and signal and noise ratios were considered as an experiment and survey of brass turning characteristics to determine the lowest material removal rate.The results obtained from the experiment were used to repeat the experiment for confirmation. This requires the turning process to be reliable and optimized


2019 ◽  
Vol 26 (1) ◽  
pp. 41-48
Author(s):  
Erkan BAHÇE ◽  
M. Sami GÜLER ◽  
Ender EMİR

CoCrMo alloys, which are well-known Co-based biomedical alloys, have many different types of surface integrity problems reported in literature. Residual stresses, white layer formation and work hardening layers are some those, matters which occur as a microstructural alteration during machining. Therefore, such problems should be solved and surface quality of end products should be improved. In this paper, the surface quality of CoCrMo alloy used in tibial component of the knee prosthesis produced by means of turning was investigated. An improvement was suggested and discussed for the improvement in their machinability with the developed turning-grinding method. Finite element analyses were also carried out to calculate temperature and thermal stresses distribution between the tool and the tibial component. The results showed that many parameters such as cutting speed, feed rate, depth of cut, tool geometry, and tool wear affect the surface quality of workpieces of CoCrMo alloy. In the turning-grinding method, the machining time is reduced by about six times compared to machining only method. The EDX analysis performed on the surface after machining showed that metal diffusion occurred from tool to the tibial component.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050006 ◽  
Author(s):  
Muhammad Owais Qadri ◽  
Hamidreza Namazi

Analysis of surface quality of machined workpiece is an important issue in machining of materials. For this purpose, scientists analyze how the texture of machined surface changes due to different conditions. Machine vibration is one of the factors that highly affects the surface quality of machined surface. In this research, we analyze the relation between machine vibration and surface quality of machined workpiece. For this purpose, we employ fractal theory and analyze how the complex structure of machined surface changes with the complex structure of machine vibration signal in case of variations of machining parameters, namely, depth of cut, feed rate and spindle speed, in milling operation. Based on the results, variations of surface quality of machined workpiece are related with the variations of complexity of machine vibration signal. The method of analysis employed in this research can be applied to other machining operations in order to find the relation between machine vibration and surface quality of machined workpiece.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950087 ◽  
Author(s):  
ASHFAQ AHAMED ◽  
ATHIF AHAMED ◽  
DILAN KATUWAWALA ◽  
TEOH TIONG EE ◽  
ZI HAN TAN ◽  
...  

Drilling is a famous and widely used machining operation to make holes in the workpiece. The size and surface quality of drilled hole are two factors that should be considered mainly. In this research, we examine the effect of different machining parameters and conditions on the surface quality of generated hole in drilling operation. For this purpose, we employ fractal theory and investigate how the variations of depth of cut and spindle speed affect the complexity of surface texture of drilled holes in wet and dry machining conditions. Based on the obtained results, the increment of depth of cut and spindle speed in case of wet and dry machining causes lower complexity on the generated surface from drilling. In addition, the generated surface from dry machining is more complex than the generated surface from wet machining. The obtained method in this research can be applied to other machining operations in order to investigate the effect of machining parameters and conditions on the surface quality of machined workpiece.


2014 ◽  
Vol 625 ◽  
pp. 742-747
Author(s):  
C.H. Mak ◽  
C.F. Cheung ◽  
M.J. Ren ◽  
L.B. Kong ◽  
S. To

This paper presents a study of cutting strategies on the surface generation in single-point diamond turning of micro V-groove patterns on precision roller drums. An aluminium precision roller drum with a diameter 250mm and 100 long was diamond turned with a V-groove pattern. A series of cutting experiments were designed to study the effect of the variation of various cutting parameters and cutting tool paths on the surface quality in diamond turning of the precision roller drum. The parameters under investigation included the depth of cut, number of steps and the depth for each cut when diamond turning V-grooves on the cylindrical surface of a workpiece. The measurement result indicates that the surface quality of V-grooves machined on the precision roller drums is affected by cutting strategies. The optimal cutting strategy for machining a V-groove pattern on a precision drum with 5µm depth was obtained.


Sign in / Sign up

Export Citation Format

Share Document