scholarly journals Nanoclay Effect into the Biodegradation and Processability of Poly(lactic acid) Nanocomposites for Food Packaging

Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2741
Author(s):  
Helena Oliver-Ortega ◽  
Victor Vandemoortele ◽  
Alba Bala ◽  
Fernando Julian ◽  
José Alberto Méndez ◽  
...  

One of the most promising expectations in the design of new materials for food packaging is focused on the development of biodegradable systems with improved barrier character. In this sense PLA reinforced with nanoclay is a potential alternative to the use of conventional oil-derivative polymers due to the synergetic effect of the biodegradable character of PLA and the barrier-induced effect derived from the dispersion of nanoparticles. In this work, composite materials based on PLA and reinforced with bentonite nanoparticles (up to 4% w/w) (NC) have been prepared to produce films with improved barrier character against water vapor transportation. Additionally, the biodegradable character of the composites depending on the crystallinity of the polymer and percentage of NC have been evaluated in the presence of an enzymatic active medium (proteinase K). Finally, a study of the capacity to film production of the composites has been performed to determine the viability of the proposals. The dispersion of the nanoparticles induced a tortuous pathway of water vapor crossing, reducing this diffusion by more than 22%. Moreover, the nanoclays materials were in all the cases acceptable for food packing in terms of migration. A migration lower than 1 mg/m2 was obtained in all the materials. Nonetheless, the presence of the nanoclays in decreased biodegradable capacity was observed. The time was enlarged to more than 15 days for the maximum content (4% w/w). On the other hand, the incorporation of NC does not avoid the processability of the material to obtain film-shaped processed materials.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1544
Author(s):  
Jet Yin Boey ◽  
Lydia Mohamad ◽  
Yong Sen Khok ◽  
Guan Seng Tay ◽  
Siti Baidurah

Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.


2014 ◽  
Vol 884-885 ◽  
pp. 481-484 ◽  
Author(s):  
Yan Wu ◽  
Ming Wei Yuan ◽  
Ji Yi Yang ◽  
Yu Yue Qin ◽  
Ming Long Yuan ◽  
...  

Thymol (TH), which has antimicrobial effect on many food pathogens, was incorporated as antimicrobial agent into composite poly (lactic acid)/poly (trimethylene carbonate)(PLA-PTMC) films. Antimicrobial active films based on PLA-PTMC were prepared by incorporating thymol at five different concentrations: 0, 3, 6, 9 and 12 %(w/w). The mechanical characterization, water vapor permeability (WVP), and antimicrobial activity of all formulations composite film were carried out. A decrease in elastic modulus was obtained for the active composite film compared with neat PLA-PTMC film. The presence of thymol decreased water vapor permeability, with a significant antimicrobial activity. Antimicrobial activities of films were tested against Escherichia coli, Staphylococcus aurous, Listeria, Bacillus subtilis, and Salmonella. Increasing amount of the thymol in the film caused a significant increase in inhibitory zones. These results suggest that thymol incorporated PLA-PTMC films have a prospectively potential in antimicrobial food packaging.


2015 ◽  
Vol 6 (1) ◽  
pp. 80
Author(s):  
Matheus Luz Alberti ◽  
Sílvio José De Souza ◽  
Heliberto Gonçalves ◽  
Fabio Yamashita ◽  
Marianne Ayumi Shirai

<p>The use of blends containing biodegradable polymers like starch and poly (lactic acid) (PLA) has gained considerable attention, especially for the food packaging production. Current research has also highlighted the use of chitosan because their antimicrobial activity, biodegradability and applicability in the production of active biodegradable food packaging. The objective of this work was to produce cassava starch and PLA sheets incorporated with chitosan by flat extrusion process (calendering-extrusion), and evaluate the mechanical, water vapor barrier and microstructural properties. In order to simplify the obtainment of the material reducing processing steps, all components of the blend were homogenized in one step extrusion The incorporation of chitosan in the starch/PLA sheets decreased significantly the tensile strength, Young's modulus, elongation at break and density. In addition, the scanning electron microscopy images showed the formation of non-homogeneous mixtures with the presence of pores between the blend compounds, and this fact affected the water vapor barrier properties increasing water vapor permeability, solubility and diffusion coefficients. It was possible to conclude that although the incorporation of chitosan to the starch/PLA sheets has not contributed to obtain materials with suitable properties, it was able to produce them by calendering-extrusion process in pilot scale. Studies about chitosan incorporation in starch and PLA sheets still needed.</p><p>&nbsp;</p><p>DOI: 10.14685/rebrapa.v6i1.208</p><p>&nbsp;</p>


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2967
Author(s):  
Edaena Pamela Díaz-Galindo ◽  
Aleksandra Nesic ◽  
Gustavo Cabrera-Barjas ◽  
Octavio Dublan-García ◽  
Rosa Isela Ventura-Aguilar ◽  
...  

The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5–15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.


2014 ◽  
Vol 900 ◽  
pp. 320-323
Author(s):  
Ming Wei Yuan ◽  
Yan Wu ◽  
Yu Yue Qin ◽  
Ming Long Yuan ◽  
Hong Li Li

In this work a preliminary study on the physical properties and antimicrobial activity of environmentally friendly active films to be produced is presented. Chitosan (CH), which has antimicrobial effect on many food pathogens, was coated as antimicrobial agent into composite poly (lactic acid)/poly (ε-caprolactone)(PLA-PCL) films. Antimicrobial active films based on PLA-PCL were prepared by coating five different chitosan concentrations: 0, 2, 4, 6 and 8 %(w/w). The mechanical characterization, water vapor permeability (WVP), and antimicrobial activity of composite PLA-PCL film coating with chitosan were carried out. The mechanical characterization, water vapor permeability of composite PLA-PCL films coating with chitosan was uninfluenced. Antimicrobial activities of films were tested against Staphylococcus aurous, Escherichia coli, Bacillus subtilis, Listeria, Salmonella. The antimicrobial activity of films were significantly increase with the chitosan concentration. The results of this work suggest that chitosan coated composite PLA-PCL films have a prospectively potential in antimicrobial activity food packaging.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 654
Author(s):  
Huidong Wei

Poly (lactic acid) (PLA) has a broad perspective for manufacturing green thermoplastic products by thermoforming for its biodegradable properties. The mechanical behaviour of PLA has been demonstrated by its strong dependence on temperature and strain rate at biaxial deformation. A nonlinear viscoelastic model by the previous study was employed in a thermoforming process used for food packaging. An optimisation approach was developed by achieving the optimal temperature profile of specimens by defining multiple heating zones based on numerical modelling with finite element analysis (FEA). The forming process of a PLA product was illustrated by modelling results on shape evolution and biaxial strain history. The optimal temperature profile was suggested in scalloped zones to achieve more even thickness distribution. The sensitivity of the optimal results was addressed by checking the robustness under perturbation.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


Sign in / Sign up

Export Citation Format

Share Document