Rechercheergebnisse zu porösen Polymerstrukturen: New Materials Permeable to Water Vapor. Von Harro Träubel. Springer, Berlin, Heidelberg, 1999. 355 S., geb., 149,- DM. ISBN 3-540-64946-8

2000 ◽  
Vol 48 (7-8) ◽  
pp. 973-973
Author(s):  
Jochen Meier-Haack
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2741
Author(s):  
Helena Oliver-Ortega ◽  
Victor Vandemoortele ◽  
Alba Bala ◽  
Fernando Julian ◽  
José Alberto Méndez ◽  
...  

One of the most promising expectations in the design of new materials for food packaging is focused on the development of biodegradable systems with improved barrier character. In this sense PLA reinforced with nanoclay is a potential alternative to the use of conventional oil-derivative polymers due to the synergetic effect of the biodegradable character of PLA and the barrier-induced effect derived from the dispersion of nanoparticles. In this work, composite materials based on PLA and reinforced with bentonite nanoparticles (up to 4% w/w) (NC) have been prepared to produce films with improved barrier character against water vapor transportation. Additionally, the biodegradable character of the composites depending on the crystallinity of the polymer and percentage of NC have been evaluated in the presence of an enzymatic active medium (proteinase K). Finally, a study of the capacity to film production of the composites has been performed to determine the viability of the proposals. The dispersion of the nanoparticles induced a tortuous pathway of water vapor crossing, reducing this diffusion by more than 22%. Moreover, the nanoclays materials were in all the cases acceptable for food packing in terms of migration. A migration lower than 1 mg/m2 was obtained in all the materials. Nonetheless, the presence of the nanoclays in decreased biodegradable capacity was observed. The time was enlarged to more than 15 days for the maximum content (4% w/w). On the other hand, the incorporation of NC does not avoid the processability of the material to obtain film-shaped processed materials.


Author(s):  
Molly K. McGath ◽  
Andrea K.I. Hall ◽  
Sara Zaccaron ◽  
Jay Wallace ◽  
William Dean Minter ◽  
...  

AbstractHistoric documents are frequently protected by placing them in a sealed polyethylene-terephthalate (PET) envelope. Although the paper is mechanically stabilized, the PET film may limit transmission of moisture or acidic degradation by-products of the paper. This creates a microenvironment for the encapsulated document. The permeation of water and acetic acid vapor through the PET film was measured to understand the microenvironment within an encapsulated enclosure. For encapsulation with a 102 μm (4 mil) PET film, the water vapor mass flux through the encapsulated film was measured. The water vapor was found to flow into or out of the PET film depending on the sample and environmental conditions. Because the encapsulated paper needed a longer time to dry than paper in open air, PET encapsulation provides a microenvironment that will buffer the encapsulated object from large swings in humidity. Acetic acid either did not diffuse through the PET, or it diffused at such a slow rate as to not be measured, due to the larger size of the acetic acid molecule than the water molecule. Keeping one edge of an encapsulation open allowed a drying rate that was four times faster than when all four sides were sealed. Because acetic acid vapor does not readily diffuse through the PET, these results reinforce the recommendations for deacidification and/or addition of buffering agents to the paper or enclosure. The results of this study point to a critical need for the investigation of new materials in conjunction with further evaluation of currently used materials.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


Author(s):  
V. R. Matricardi ◽  
G. G. Hausner ◽  
D. F. Parsons

In order to observe room temperature hydrated specimens in an electron microscope, the following conditions should be satisfied: The specimen should be surrounded by water vapor as close as possible to the equilibrium vapor pressure corresponding to the temperature of the specimen.The specimen grid should be inserted, focused and photo graphed in the shortest possible time in order to minimize dehydration.The full area of the specimen grid should be visible in order to minimize the number of changes of specimen required.There should be no pressure gradient across the grid so that specimens can be straddled across holes.Leakage of water vapor to the column should be minimized.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
E. L. Vigil ◽  
E. F. Erbe

In cotton seeds the radicle has 12% moisture content which makes it possible to prepare freeze-fracture replicas without fixation or cryoprotection. For this study we have examined replicas of unfixed radicle tissue fractured at room temperature to obtain data on organelle and membrane structure.Excised radicles from seeds of cotton (Gossyplum hirsutum L. M-8) were fractured at room temperature along the longitudinal axis. The fracture was initiated by spliting the basal end of the excised radicle with a razor. This procedure produced a fracture through the tissue along an unknown fracture plane. The warm fractured radicle halves were placed on a thin film of 100% glycerol on a flat brass cap with fracture surface up. The cap was rapidly plunged into liquid nitrogen and transferred to a freeze- etch unit. The sample was etched for 3 min at -95°C to remove any condensed water vapor and then cooled to -150°C for platinum/carbon evaporation.


Sign in / Sign up

Export Citation Format

Share Document