scholarly journals Preparation and Characterization of Aminoglycoside-Loaded Chitosan/Tripolyphosphate/Alginate Microspheres against E. coli

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3326
Author(s):  
Estefanía Tiburcio ◽  
Eduardo García-Junceda ◽  
Leoncio Garrido ◽  
Alfonso Fernández-Mayoralas ◽  
Julia Revuelta ◽  
...  

Although aminoglycosides are one of the common classes of antibiotics that have been widely used for treating infections caused by pathogenic bacteria, the evolution of bacterial resistance mechanisms and their inherent toxicity have diminished their applicability. Biocompatible carrier systems can help sustain and control the delivery of antibacterial compounds while reducing the chances of antibacterial resistance or accumulation in unwanted tissues. In this study, novel chitosan gel beads were synthesized by a double ionic co-crosslinking mechanism. Tripolyphosphate and alginate, a polysaccharide obtained from marine brown algae, were employed as ionic cross-linkers to prepare the chitosan-based networks of gel beads. The in vitro release of streptomycin and kanamycin A was bimodal; an initial burst release was observed followed by a diffusion mediated sustained release, based on a Fickian diffusion mechanism. Finally, in terms of antibacterial properties, the particles resulted in growth inhibition of Gram-negative (E. coli) bacteria.

2021 ◽  
Vol 18 ◽  
Author(s):  
Saeed Bazraee ◽  
Hamid Mobedi ◽  
Arezuo Mashak ◽  
Ahmad Jamshidi

Introduction: Typically, in situ forming implants utilize Poly (lactide-co-glycolide) (PLGA) as a carrier and N-methyl-2-pyrrolidone (NMP) as a solvent. However, it is essential to develop different carriers to release various drugs in a controlled and sustained manner with economic and safety considerations. Objective: The present study aims to evaluate the in-vitro release of Bupivacaine HCl from in situ forming systems as post-operative local anesthesia. Methods: We used Sucrose acetate isobutyrate (SAIB), PLGA 50:50, and a mixture of them as carriers to compare the release behavior. Besides, the effect of PLGA molecular weight (RG 502H, RG 503H, and RG 504H), solvent type, and solvent concentration on the drug release profile was evaluated. The formulations were characterized by investigating their in-vitro drug release, rheological properties, solubility, and DSC, in addition to their morphological properties. Furthermore, the Korsmeyer-Peppas and Weibull models were applied to the experimental data. The results revealed that a mixture of SAIB and PLGA compared to using them solely can extend the Bupivacaine HCl release from 3 days to two weeks. Results: The DSC results demonstrated the compatibility of the mixture by showing a single Tg. The formulation with NMP had a higher burst release and final release in comparison with other solvents by 30% and 96%, respectively. Increasing the solvent concentration from 12% to 32% raised the drug release significantly, which confirmed the larger porosity in the morphology results. From the Korsmeyer-Peppas model, the mechanism of drug release is predicted to be non-Fickian diffusion.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (01) ◽  
pp. 42-49
Author(s):  
P Ashok Kumar ◽  
◽  
S. Damodar Kumar

Acyclovir was formulated as oral controlled release matrix tablets using natural and synthetic polymers separately or in combinations. Tablets were prepared by direct compression method. The tablets were evaluated to thickness, weight variation test, drug content, hardness, friability and in vitro release studies.All the formulations showed compliance with pharmacopoeal standards. The tablets prepared with various combination of hydroxy propyl methylcellulose (HPMC K100), locust bean gum (LBG) and karaya gum (KG) failed to produce the desired controlled release. Dissolution studies indicated that formulation F5 was most successful of the study. The formulation F5 exhibited anomalous (non-Fickian) diffusion mechanism. Based on the results of in-vitro studies it was concluded that the hydrophilic polymers canbe used as an effective matrix former to provide controlled release of acyclovir. SEM images of tablet after dissolution showed pore formation. FT-IR and DSC study did not show any possibility of interaction between acyclovir and excipients.


2017 ◽  
Vol 33 (4) ◽  
pp. 382-396 ◽  
Author(s):  
Wen Zhang ◽  
Yan Gao ◽  
Ning Yang ◽  
Hua Zhang ◽  
Feng Zhang ◽  
...  

Sinomenine is a natural alkaloid with important biological activities (e.g. anti-cancer, anti-inflammatory, and anti-allergic). However, the unstability and short half-life absolutely limited its application to foods. Microencapsulation technology can offer a way to solve these issues. In this study, polylactic acid microcapsules loading sinomenine hydrochloride were fabricated by phase inversion emulsification-drying in liquid technique. The results showed that microcapsules had nice spherical shape, uniform particle size, and free flowing. The encapsulation efficiency was 89.2% and drug loading was 8.9% under the optimal conditions. In vitro release assays demonstrated that release of sinomenine from microcapsules was sustained and slow. Moreover, it was found that the sinomenine release fitted Fickian diffusion mechanism. The results of cytotoxicity study showed that sinomenine-loaded microcapsules were biocompatible. Sinomenine-loaded microcapsules could inhibit the growth of MDA-MB-231 cells using methyl thiazolyl tetrazolium assay. In summary, polylactide microcapsules exhibit excellent properties for sinomenine that can be used in drug or food industry.


2021 ◽  
Vol 12 ◽  
Author(s):  
José Luis Díaz-Nuñez ◽  
Rodolfo García-Contreras ◽  
Israel Castillo-Juárez

The recent increase in bacterial resistance to antibiotics has motivated the resurgence of the study of natural antimicrobial products. For centuries, plants have been recognized for their bactericidal properties. However, in the last two decades, it has been reported that several plant derived metabolites at growth subinhibitory concentrations also tend to have anti-virulence properties, since they reduce the expression of factors that cause damage and the establishment of pathogenic bacteria. In this area of study, plants have been positioned as one of the main natural sources of anti-virulence molecules, but only a small portion of the plant species that exist have been investigated. Also, anti-virulence studies have been primarily focused on analyzing the ability of extracts and compounds to inhibit quorum sensing and biofilms formation in vitro. This mini-review discusses the current panorama, the trends in the study of anti-virulence phytochemicals, as well as their potential for the development of antibacterial therapies.


2005 ◽  
Vol 20 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Yu-Fang Zhu ◽  
Jian-Lin Shi ◽  
Yong-Sheng Li ◽  
Hang-Rong Chen ◽  
Wei-Hua Shen ◽  
...  

The hollow mesoporous spheres (HMS) with cubic pore network have been synthesized via a simple two-step method. Two drugs of different molecules size, Aspirin and Gentamicin, were tested by one simple adsorption process. Up to 336 mg Aspirin molecules can be stored in 1.0 g HMS, while Gentamicin molecules of much larger size are much more difficult to be introduced into the pore channels of HMS. The same results can be obtained by using MCM-48 and MCM-41 as comparative mesoporous carriers. The HMS shows significantly higher storage amount of Aspirin than conventional MCM-48 and MCM-41 due to its hollow core structure. The release process of HMS-Aspirin, MCM-48-Aspirin and MCM-41-Aspirin are found to have a sustained-release property and follow a Fickian diffusion mechanism. Moreover, the HMS is suitable for storage of drug molecules of much smaller size.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Baljit Singh ◽  
Devender Kumar Sharma ◽  
Abhishek Dhiman

Atrazine is more reliable, flexible, effective and less expensive herbicide than any other available weed control approaches. However, easy leaching of atrazine is a matter of great environmental and health concern which limits its strong recommendation for practical applicability. Hence, controlled release formulations of atrazine, specially based on natural polysaccharide, are required for delivery and resolve the problems associated with conventional formulations. In the present work, slow release atrazine containing alginate-agar based bead formulations have been prepared and characterized by scanning electron micrography, Fourier transform infrared spectroscopy and swelling studies. The release of atrazine from the beads occurred through non-Fickian diffusion mechanism. The release of atrazine from the beads in the soil has been observed slower and lesser in soil as compared to the in vitro release. Besides providing the slow release of atrazine, these formulations after degradation may enhance the fertility of the soil.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
HAYDER YOUSIF ◽  
Zahraa F Shaker ◽  
Hayder Hamed Abed

The plant of c. colocynthis is perennial herbal of the Cucurbitaceous types that isused as a traditional medicinal plant on a Mediterranean tub and equatorialnations.Studies on the antibacterial properties of Citrullus colocynthis leaf extract,Medicinal plants have conventional been used in abortifacient and treatsconstipation, edema, Infection caused by bacteria, cancer and diabetesproblems.The antibacterial efficacy of citrullus colocynthesis (L.) was investigatedin this work using five species of pathogenic bacteria isolated from urinary tractinfections: E. coli, Klebsiella pneumoniae, Streptococcus spp, Psudomonasauroginosa, and Staphylococcus aureus. For the antibacterial test, water andethanol extract were employed.The ethanolic extract showed inhibitory activityagainst Escherichia Coli at (100 °C, 80 °C, 60 °C) while Staphylococcus aureus at(100 °C, 80 °C), Streptococcus spp. at (100 °C). Water extract exhibited less or noactivity against all types of bacteria.The findings of this investigation indicate thatC. colocynthis might be utilized to treat disorders caused by the test organisms.


Author(s):  
Iman M. Alfagih ◽  
Bushra AlQuadeib ◽  
Basmah Aldosari ◽  
Alanood Almurshedi ◽  
Mohamed M. Badran ◽  
...  

Aims: To improve the dissolution of indomethacin through developing liquid indomethacin loaded cubosomes dispersion for oral delivery. Methodology: Glyceryl monooleate based indomethacin loaded cubosomes dispersion were prepared using Taguchi design to study the effect of indomethacin to the disperse phase ratio and poloxamer 407 (PLX%) concentrations on the particle size and entrapment efficiency (%EE). Furthermore, in vitro release in phosphate buffer (pH 6.8), and morphology were investigated. Also, the stability of indomethacin loaded cubosomes dispersions was examined after 6 months storage at 25°C in the dark. Results: The prepared indomethacin cubosomes dispersions were in the nanoscale (184.53±0.7 to 261.33±0.8 nm) with reasonable %EE (49.30±2.6 to 95.55±3.4 %). Moreover, a biphasic release profile was predominant for all formulations, up to 50% of payload released after 2h followed by a second continuous sustained release phase over 24h. The kinetics of indomethacin release was best explained by Higuchi model and the mechanism of drug release from these cubosomes dispersions was by fickian diffusion mechanism. In general, the indomethacin loaded cubosomes dispersions were stable after 6 months storage at 25°C in the dark. Conclusion: Indomethacin loaded cubosomes dispersions proved to be a successful platform to encapsulate and enhance the release of indomethacin with a good stability profile over 6 months.


Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Sign in / Sign up

Export Citation Format

Share Document