scholarly journals Characterization 0.1 wt.% Nanomaterial/Photopolymer Composites with Poor Nanomaterial Dispersion: Viscosity, Cure Depth and Dielectric Properties

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3948
Author(s):  
Rytis Mitkus ◽  
Marlitt Scharnofske ◽  
Michael Sinapius

Notably, 3D printing techniques such as digital light processing (DLP) have the potential for the cost-effective and flexible production of polymer-based piezoelectric composites. To improve their properties, conductive nanomaterials can be added to the photopolymer to increase their dielectric properties. In this study, the microstructure, viscosity, cure depth, and dielectric properties of ultraviolet (UV) light curable 0.1 wt.% nanomaterial/photopolymer composites are investigated. The composites with multi-walled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) are pre-dispersed in different solvents (acetone, isopropyl alcohol, and ethanol) before adding photopolymer and continuing dispersion. For all prepared suspensions, a reduction in viscosity is observed, which is favorable for 3D printing. In contrast, the addition of 0.1 wt.% nanomaterials, even with poor dispersion, leads to curing depth reduction up to 90% compared to pristine photopolymer, where the nanomaterial dispersion is identified as a contributing factor. The formulation of MWCNTs dispersed in ethanol is found to be the most promising for increasing the dielectric properties. The post-curing of all composites leads to charge immobility, resulting in decreased relative permittivity.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Marek Pagac ◽  
Jiri Hajnys ◽  
Quoc-Phu Ma ◽  
Lukas Jancar ◽  
Jan Jansa ◽  
...  

Additive manufacturing (3D printing) has significantly changed the prototyping process in terms of technology, construction, materials, and their multiphysical properties. Among the most popular 3D printing techniques is vat photopolymerization, in which ultraviolet (UV) light is deployed to form chains between molecules of liquid light-curable resin, crosslink them, and as a result, solidify the resin. In this manuscript, three photopolymerization technologies, namely, stereolithography (SLA), digital light processing (DLP), and continuous digital light processing (CDLP), are reviewed. Additionally, the after-cured mechanical properties of light-curable resin materials are listed, along with a number of case studies showing their applications in practice. The manuscript aims at providing an overview and future trend of the photopolymerization technology to inspire the readers to engage in further research in this field, especially regarding developing new materials and mathematical models for microrods and bionic structures.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1099 ◽  
Author(s):  
Qiuping Li

Ionogels refer to an emerging composite material made from the confinement of ionic liquids within some specific cross-linked network matrices. They have potential applications in areas such as electrochemical and optical-electric materials. Incorporation of lanthanide (Eu3+, Tb3+) complexes covalently functionalized multi-walled carbon nanotubes (MWCNTs) in ionogels provide new ideas to design and synthesize novel luminescent hybrid materials that have excellent characteristics of luminescence and ionic conductivity. Here, the multifunctional ionogels were synthesized by confining an ionic liquid and the rare earth functionalized MWCNTs in the cross-linked polymethyl methacrylate (PMMA) networks, resulting in a novel optical/electric multifunctional hybrid material. The SEM images and digital photographs suggest that the lanthanide functionalized MWCNTs are evenly dispersed in the hybrid matrices, thus leading to a certain transparency bulky gel. The resulting ionogels exhibit certain viscosity and flexibility, and display an intense red/green emission under UV-light irradiation. The intrinsic conductibility of the embedded ionic liquids and carbon nanotubes in conjunction with the outstanding photoluminescent properties of lanthanide complexes makes the soft hybrid gels a material with great potential and valuable application in the field of optical-electric materials.


2021 ◽  
Author(s):  
Lin Li ◽  
Biswanath Das ◽  
Ahibur Rahaman ◽  
Andrey Shatskiy ◽  
Fei Ye ◽  
...  

Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in our transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation and two simple methods for preparing anodes by attaching this catalyst onto multi-walled carbon nanotubes. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscope techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 635 ◽  
Author(s):  
Jinjie Luo ◽  
Haibao Wang ◽  
Duquan Zuo ◽  
Anping Ji ◽  
Yaowen Liu

As an advanced manufacturing technology that has been developed in recent years, three-dimensional (3D) printing of macromolecular materials can create complex-shaped components that cannot be realized by traditional processing. However, only a few types of macromolecular materials are suitable for 3D printing: the structure must have a single function, and manufacturing macromolecular functional devices is difficult. In this study, using poly lactic acid (PLA) as a matrix, conductive composites were prepared by adding various contents of multi-walled carbon nanotubes (MWCNTs). The printability and properties of MWCNT/PLA composites with different MWCNT proportions were studied by using the fused deposition modeling (FDM) processing technology of 3D printing. The experimental results showed that high conductivity can be realized in 3D-printed products with a composite material containing 5% MWCNTs; its conductivity was 0.4 ± 0.2 S/cm, its tensile strength was 78.4 ± 12.4 MPa, and its elongation at break was 94.4% ± 14.3%. It had a good melt flow rate and thermal properties, and it enabled smooth printing, thus meeting all the requirements for the 3D printing of consumables.


Biomimetics ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Athanasios Kotrotsos ◽  
Prokopis Yiallouros ◽  
Vassilis Kostopoulos

The solution electrospinning process (SEP) is a cost-effective technique in which a wide range of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication, and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP) nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber diameter), the surface properties (in terms of contact angle) and the mechanical properties under the tensile mode of the fabricated scaffolds have been investigated and further compared against pristine PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as the candidate material for potential future cell culturing.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 673
Author(s):  
Heba M. Hashem ◽  
Saad S. M. Hassan ◽  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
E. M. AbdelBary

A simple, efficient and reliable analytical method was developed and used for the determination of the fluvoxamine drug (FLV) in pharmaceutical preparations and biological fluids. The method is based on the cost-effective screen-printed platform for the potential transduction of the drug. Host-tailored molecular imprinting polymer (MIP) was integrated with the potentiometric platform as a recognition receptor, in which FLV, acrylamide (AAm), ethylene glycol dimethacrylate (EGDMA) and acetonitrile were used as a template, functional monomer, cross-linker, and solvent, respectively. MIP particles were dispersed in plasticized poly (vinyl chloride) (PVC) and the membrane was drop-casted on carbon screen-printed electrode. The MIP, in addition to non-imprinted polymers (NIP), was characterized and the binding experiment revealed high affinity and adsorption capacity of MIP towards FLV. The proposed sensor displayed near-Nernstian cationic slope of 55.0 ± 0.8 mV/decade (r2 = 0.999) with a low detection limit of 4.8 × 10−6 mol/L over a wide pH range (3.0–8.5). The electrochemical features of the proposed sensors including electrochemical impedance spectroscopy (EIS) and chronopotentiometry measurements (CP) in the presence of multi-walled carbon nanotubes (MWCNTs) as a solid contact transducer were also investigated. The applications of the proposed sensor for the determination of FLV in different dosage forms with recovery values (98.8%–101.9%) and (97.4%–101.1%), respectively compared with the reference HPLC method with acceptedFandt-student tests values at the 95% confidence level.


2015 ◽  
Vol 815 ◽  
pp. 188-192
Author(s):  
Y.S. Lee ◽  
F. Malek ◽  
E.M. Cheng ◽  
Wei Wen Liu ◽  
Kok Yeow You ◽  
...  

This paper is to study the dielectric properties, magnetic properties, and dielectric conductivity of Multi-walled carbon nanotubes (MWCNTs) and polyester (PE) composites. The composites with different amount of MWCNTs (5-15%) have been studied in the Ku-Band range (12.4-18 GHz). The rectangular waveguide (WR-62) was used to measure the dielectric properties and magnetic properties of the samples. The results show the dielectric properties and conductivity of MWCNTs/PE composites is increasing with the MWCNTs filler increases. The real part of dielectric properties values increase from 5.5 to 26.6 with increasing the MWCNTs loading from 5 % to 15 %. The increasing of MWCNTs filler in the MWCNTs/PE composites does not effects on magnetic properties, the real part and imaginary part of magnetic properties are approximate to 1 and 0. The highest conductivity of 15 % MWCNTs loading is reach to 11.02 (S/m) at 18 GHz. Keywords: composites, dielectric properties, magnetic properties, conductivity


2017 ◽  
Vol 9 (1) ◽  
pp. 015007 ◽  
Author(s):  
Jiankang He ◽  
Fangyuan Xu ◽  
Ruonan Dong ◽  
Baolin Guo ◽  
Dichen Li

Sign in / Sign up

Export Citation Format

Share Document