scholarly journals Numerical Study of Customized Artificial Cornea Shape by Hydrogel Biomaterials on Imaging and Wavefront Aberration

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4372
Author(s):  
Yu-Chi Ma ◽  
Chang-Tsung Hsieh ◽  
Yu-Hsiang Lin ◽  
Chi-An Dai ◽  
Jia-Han Li

The blindness caused by cornea diseases has exacerbated many patients all over the world. The disadvantages of using donor corneas may cause challenges to recovering eye sight. Developing artificial corneas with biocompatibility may provide another option to recover blindness. The techniques of making individual artificial corneas that fit the biometric parameters for each person can be used to help these patients effectively. In this study, artificial corneas with different shapes (spherical, aspherical, and biconic shapes) are designed and they could be made by two different hydrogel polymers that form an interpenetrating polymer network for their excellent mechanical strength. Two designed cases for the artificial corneas are considered in the simulations: to optimize the artificial cornea for patients who still wear glasses and to assume that the patient does not wear glasses after transplanting with the optimized artificial cornea. The results show that the artificial corneas can efficiently decrease the imaging blur. Increasing asphericity of the current designed artificial corneas can be helpful for the imaging corrections. The differences in the optical performance of the optimized artificial corneas by using different materials are small. It is found that the optimized artificial cornea can reduce the high order aberrations for the second case.

2014 ◽  
Vol 86 (11) ◽  
pp. 1707-1721 ◽  
Author(s):  
Ecaterina Stela Dragan

Abstract Interpenetrating polymer network (IPN) hydrogels brought distinct benefits compared to single network hydrogels like more widely controllable physical properties, and (frequently) more efficient drug loading/release. However, IPN strategy is not sufficient to design hydrogels with enhanced mechanical properties required for regenerative medicine like replacement of natural cartilage or artificial cornea. Some of the novel techniques promoted last decade for the preparation of IPN hydrogels which fulfill these requirements are discussed in the review. Among them, “double network” strategy had a strong contribution in the development of a large variety of hydrogels with spectacular mechanical properties at water content up to 90 %. Using cryogelation in tandem with IPN strategy led to composite cryogels with high mechanical properties and high performances in separation processes of ionic species. Highly stretchable and extremely tough hydrogels have been obtained by combining a covalently cross-linked synthetic network with an ionically cross-linked alginate network. IPN hydrogels with tailored mesh size have been also reported.


1994 ◽  
Vol 28 (6) ◽  
pp. 745-753 ◽  
Author(s):  
Traian V. Chirila ◽  
Sarojini Vijayasekaran ◽  
Robert Horne ◽  
Yi-Chi Chen ◽  
Paul D. Dalton ◽  
...  

Author(s):  
Rachel Parke-Houben ◽  
Courtney H. Fox ◽  
Luo Luo Zheng ◽  
Dale J. Waters ◽  
Jennifer R. Cochran ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


Heliyon ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. e05752
Author(s):  
N. Vishnu Ganesh ◽  
Shumaila Javed ◽  
Qasem M. Al-Mdallal ◽  
R. Kalaivanan ◽  
Ali J. Chamkha

Sign in / Sign up

Export Citation Format

Share Document