scholarly journals Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 21
Author(s):  
Silindokuhle Jakavula ◽  
Nkositetile Raphael Biata ◽  
Kgogobi M. Dimpe ◽  
Vusumzi Emmanuel Pakade ◽  
Philiswa Nosizo Nomngongo

Antimony(III) is a rare element whose chemical and toxicological properties bear a resemblance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe3O4@SiO2@CNFs nanocomposite as an adsorbent. The amount of antimony in samples was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were investigated using fractional factorial design and response surface methodology based on central composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD) and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L−1 and 0.44 µg L−1, respectively. The intra-day and inter-day precision expressed as relative standard deviations (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of the method was evaluated using spiked recovery experiments and the percentage recoveries ranged from 95–98.3%.

2015 ◽  
Vol 54 (19) ◽  
pp. 5328-5335 ◽  
Author(s):  
İbrahim Dolak ◽  
Rüstem Keçili ◽  
Deniz Hür ◽  
Arzu Ersöz ◽  
Rıdvan Say

2014 ◽  
Vol 1015 ◽  
pp. 570-573
Author(s):  
Xiao Juan Wei ◽  
Jian Ming Pan

A novel method for the determination of ruthenium in waste ruthenium-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limit of detection (LODs) of Ru for tested solution was 9 ng mL-1. The relative standard deviations (RSDs) for Ru was 2.12 % (CRu= 1 mg L-1, n = 7). The linear range of calibration graph for Ru and Zn was 0 ~ 100.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.


2001 ◽  
Vol 55 (10) ◽  
pp. 1291-1296 ◽  
Author(s):  
A. Kehden ◽  
J. Flock ◽  
W. Vogel ◽  
J. A. C. Broekaert

A new type of laser ablation system (laser-induced argon spark atomizer) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was used for the direct analysis of compact metallic samples. The material is ablated with the aid of a Nd:YAG laser (λ = 1064 nm, 300 mJ/pulse, ν = 4–20 Hz) and entered with a carrier-gas into a commercial ICP-OES system (Plasma 2000, Perkin–Elmer) with two monochromators. The influence of the laser parameters (pulse frequency and power) on the ablation rate and the particle size of the ablated material were investigated, and they were found to range from 1.0 to 16.7 μg/s and below 100 nm, respectively. In the case of brass samples, selective evaporation of the matrix elements Cu and Zn was found to occur. Laser parameters such as frequency, power, and ablation time were found not to influence the selective evaporation of Cu and Zn significantly. The detection limits for Ni, Cr, Mo, Mn, and Si in low-alloyed steel; Fe, Ni, Sn, and Pb in brass; and Fe, Cu, and Si in aluminum were found to be at the 20–100 μg/g level, independent of the sample matrix. The long-term stability of the emission signal was found to be better than 5% for ablation times of up to 10 min, and relative standard deviations usually are between 1 and 5%. For Mo, Mn, Si, Ni, and Cr in the BAS SS 435 sample, good agreement of the analytical results at the 0.01–0.5% level with certified values could be obtained when calibrating with other BAS standard reference samples.


2014 ◽  
Vol 1033-1034 ◽  
pp. 599-602
Author(s):  
Chun Miao Shi ◽  
Xiao Juan Wei

A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the limit of detection (LODs) of Pt for tested solution was 15 ng mL-1. The relative standard deviations (RSDs) for Pt was 2.35 % (CPt= 5 mg L-1, n = 7). The linear range of calibration graph for Pt was 0 ~ 150.00 mg L-1. The proposed method was applied to determine the practical samples with good recoveries and satisfactory results.


2020 ◽  
Vol 58 (9) ◽  
pp. 868-874
Author(s):  
Jie Gong ◽  
Guanglian Zhou ◽  
Yuanhong Wu ◽  
Siying Zhang ◽  
Xiumei Liu

Abstract A capillary electrophoresis (CE) method combined with online and offline enrichment for improving the detection sensitivity of chondroitin sulfate (CS) is established. The online enrichment method is based on the field-amplified sample stacking and large volume electrokinetic injection, and offline enrichment is based on the association between cetyltrimethylammonium chloride and CS. Experimental parameters affecting CE method such as the type and pH of background electrolyte, the injection mode and time and the steps of offline enrichment were optimized. Under optimum conditions, the calibration plot between CS concentration and peak area was linear in the range of 1 ~ 100 μg/mL. The enrichment factor was 130 times and the limit of detection was 50 ng/mL. The average recovery was 103.5% and the relative standard deviation of peak area was <2.0%. The method was successfully applied to the quantitative analysis of CS in drugs.


Sign in / Sign up

Export Citation Format

Share Document