scholarly journals Brillouin Scattering in Polymer Optical Fibers: Fundamental Properties and Potential Use in Sensors

Polymers ◽  
2011 ◽  
Vol 3 (2) ◽  
pp. 886-898 ◽  
Author(s):  
Yosuke Mizuno ◽  
Kentaro Nakamura
Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3397
Author(s):  
María Ángeles Losada ◽  
María Mazo ◽  
Alicia López ◽  
Candela Muzás ◽  
Javier Mateo

Large-core polymer optical fiber (POF) links have limitations in capacity and reach due to the fibers’ high modal dispersion and attenuation. Most of these links use red laser diodes, even though the attenuation spectrum of poly(methyl methacrylate) (PMMA), the basic polymer used to manufacture these fibers, has a lower minimum in the green region. Therefore, we set out to explore the potential use of green light in transmission systems, comparing the performances of three step-index polymer optical fibers (SI-POFs) with different numerical apertures. We obtained measurements of intensity distribution, frequency response and bit error rate (BER), as functions of fiber length. We have also compared the fibers’ frequency responses with red and green light for a few selected lengths. Our results confirm that SI-POFs attenuate less in response to green light, which can increase their length. This advantage is partially counterbalanced by a slightly higher dispersion that limits the capacity of the high-aperture fibers, particularly at relatively short lengths. Our conclusions are critical to understanding SI-POF behavior and to designing thorough SI-POF models that can aid the design of POF-based links for different scenarios.


Author(s):  
Werner Daum ◽  
Jürgen Krauser ◽  
Peter E. Zamzow ◽  
Olaf Ziemann

2021 ◽  
Vol 66 ◽  
pp. 102638
Author(s):  
Andreas Evertz ◽  
Daniel Schrein ◽  
Ejvind Olsen ◽  
Gerd-Albert Hoffmann ◽  
Ludger Overmeyer

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1740
Author(s):  
Konrad Jakubowski ◽  
Manfred Heuberger ◽  
Rudolf Hufenus

The increasing interest in luminescent waveguides, applied as light concentrators, sensing elements, or decorative illuminating systems, is fostering efforts to further expand their functionality. Yarns and textiles based on a combination of distinct melt-spun polymer optical fibers (POFs), doped with individual luminescent dyes, can be beneficial for such applications since they enable easy tuning of the color of emitted light. Based on the energy transfer occurring between differently dyed filaments within a yarn or textile, the collective emission properties of such assemblies are adjustable over a wide range. The presented study demonstrates this effect using multicolor, meltspun, and photoluminescent POFs to measure their superimposed photoluminescent emission spectra. By varying the concentration of luminophores in yarn and fabric composition, the overall color of the resulting photoluminescent textiles can be tailored by the recapturing of light escaping from individual POFs. The ensuing color space is a mean to address the needs of specific applications, such as decorative elements and textile illumination by UV down-conversion.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2667
Author(s):  
Ander Vieira ◽  
Jon Arrue ◽  
Begoña García-Ramiro ◽  
Felipe Jiménez ◽  
María Asunción Illarramendi ◽  
...  

In this paper, useful models that enable time-efficient computational analyses of the performance of luminescent solar concentrators (LSCs) are developed and thoroughly described. These LSCs are based on polymer optical fibers codoped with organic dyes and/or europium chelates. The interest in such dopants lies in the availability of new dyes with higher quantum yields and in the photostability and suitable absorption and emission bands of europium chelates. Time-efficiency without compromising accuracy is especially important for the simulation of europium chelates, in which non-radiative energy transfers from the absorbing ligands to the europium ion and vice versa are so fast that the discretization in time, in the absence of some simplifying assumptions, would have to be very fine. Some available experimental results are also included for the sake of comparison.


Sign in / Sign up

Export Citation Format

Share Document