scholarly journals Effect of Nitric Acid Modification on Characteristics and Adsorption Properties of Lignite

Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 167 ◽  
Author(s):  
Bo Huang ◽  
Guowei Liu ◽  
Penghui Wang ◽  
Xiang Zhao ◽  
Hongxiang Xu

The objective of this research was to explore the changes of the pore structure and surface properties of nitric-modified lignite and base the adsorption performance on physical and chemical adsorbent characteristics. To systematically evaluate pore structure and surface chemistry effects, several lignite samples were treated with different concentrations of nitric acid in order to get different pore structure and surface chemistry adsorbent levels. A common heavy metal ion contaminant in water, Pb2+, served as an adsorbate probe to demonstrate the change of modified lignite adsorption properties. The pore structure and surface properties of lignite samples before and after modification were characterized by static nitrogen adsorption, X-ray diffraction, Scanning electron microscope, Fourier transform infrared spectroscopy, zeta potential, and X-ray photoelectron spectroscopy. The experimental results showed that nitric acid modification can increase the ability of lignite to adsorb Pb2+. The adsorption amount of Pb2+ increased from 14.45 mg·g−1 to 30.68 mg·g−1. Nitric acid reacted with inorganic mineral impurities such as iron dolomite in lignite and organic components in coal, which caused an increase in pore size and a decrease in specific surface areas. A hydrophilic adsorbent surface more effectively removed Pb2+ from aqueous solution. Nitric acid treatment increased the content of polar oxygen-containing functional groups such as hydroxyl, carbonyl, and carboxyl groups on the surface of lignite. Treatment introduced nitro groups, which enhanced the negative electrical properties, the polarity of the lignite surface, and its metal ion adsorption performance, a result that can be explained by enhanced water adsorption on hydrophilic surfaces.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 868 ◽  
Author(s):  
Klemen Avsec ◽  
Monika Jenko ◽  
Marjetka Conradi ◽  
Aleksandra Kocijan ◽  
Alenka Vesel ◽  
...  

We have investigated new and retrieved cementless hip endoprostheses that prematurely failed due to (i) aseptic loosening, (ii) infection and (iii) latent infection. The aim was to better understand the physico-chemical phenomena on the surfaces and sub-surfaces of the Ti6Al7Nb alloy implant. The results of our studies should enable us to distinguish the causes of premature failure, optimize the surface modification, achieve optimal osseointegration and extend the useful lifetime of the implants. The surface properties of the Ti6Al7Nb alloys of the hip-stem endoprostheses (30 retrieved and 2 new) were determined by contact-angle measurements and the average surface roughness. The surface chemistry and microstructure were analysed by scanning electron microscopy (SEM) for morphology, energy-dispersive X-ray spectroscopy (EDS) for the chemistry, and electron back-scatter diffraction (EBSD) for the phase analysis; Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) for the surface chemistry; and electrochemical measurements for the corrosion. The improved wettability of the grit-blasted surface of the Ti6Al7Nb stems after autoclaving was measured, as was the super wettability after oxygen-plasma sterilization. The secondary-electron images showed that the morphology and microstructure of the new and retrieved stems (prematurely failed due to aseptic loosening, infection and latent infection) differ slightly, while the EDS analysis revealed corundum contamination of the grit-blasted surface. We found corundum-contaminated Ti6Al7Nb stem surfaces and sub-surfaces for all the investigated new and retrieved implants. These residues are a potential problem, i.e., third-body wear particles, and probably induce the osteolysis and aseptic loosening.



2014 ◽  
Vol 53 (8S3) ◽  
pp. 08NB05 ◽  
Author(s):  
Jong-Chang Woo ◽  
Chang-Auck Choi ◽  
Woo-Seok Yang ◽  
Yoon-Soo Chun ◽  
Chang-Il Kim


1981 ◽  
Vol 85 (10) ◽  
pp. 1406-1412 ◽  
Author(s):  
P. O. Scokart ◽  
A. Amin ◽  
C. Defosse ◽  
P. G. Rouxhet


2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.



2011 ◽  
Vol 63 (5) ◽  
pp. 917-923 ◽  
Author(s):  
Jun Hu ◽  
Donglin Zhao ◽  
Xiangke Wang

Multiwalled carbon nanotubes (MWCNTs)/iron oxide magnetic composites (named as MCs) were prepared by co-precipitation method, and were characterised by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in detail. The prepared MCs were employed as an adsorbent for the removal of Pb(II) and Cu(II) ions from wastewater in heavy metal ion pollution cleanup. The results demonstrated that the sorption of Pb(II) and Cu(II) ions was strongly dependent on pH and temperature. The experimental data were well described by Langmuir model, and the monolayer sorption capacity of MCs was found to vary from 10.02 to 31.25 mg/g for Pb(II) and from 3.11 to 8.92 mg/g for Cu(II) at temperature increasing from 293.15 to 353.15 K at pH 5.50. The sorption capacity of Pb(II) on MCs was higher than that of Cu(II), which was attributed to their ionic radius, hydration energies and hydrolysis of their hydroxides. The thermodynamic parameters (i.e., ΔH0, ΔS0 and ΔG0) were calculated from temperature dependent sorption isotherms, and the results indicated that the sorption of Pb(II) and Cu(II) ions on MCs were spontaneous and endothermic processes.





CORROSION ◽  
10.5006/3234 ◽  
2019 ◽  
Vol 75 (12) ◽  
pp. 1474-1486
Author(s):  
Jéssica Cristina Costa de Castro Santana ◽  
Rejane Maria Pereira da Silva ◽  
Renato Altobelli Antunes ◽  
Sydney Ferreira Santos

The aim of the present work was to study the surface chemistry, microstructure, and local corrosion processes at the decarburized layer of the SAE 9254 automotive spring steel. The samples were austenitized at 850°C and 900°C, and oil quenched. The microstructure was investigated using confocal laser scanning microscopy and scanning electron microscopy. The surface chemistry was analyzed by x-ray photoelectron spectroscopy. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess the global corrosion behavior of the decarburized samples. Scanning electrochemical microscopy was used to evaluate the influence of decarburization on the local corrosion activity. Microstructural characterization and x-ray photoelectron spectroscopy analysis indicate a dependence of the local electrochemical processes with the steel microconstituents and Si oxides in the decarburized layer.





Sign in / Sign up

Export Citation Format

Share Document