scholarly journals The Engineering of Porous Silica and Hollow Silica Nanoparticles to Enhance Drug-loading Capacity

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 805 ◽  
Author(s):  
Ngoc-Tram Nguyen-Thi ◽  
Linh Phuong Pham Tran ◽  
Ngoc Thuy Trang Le ◽  
Minh-Tri Cao ◽  
The-Nam Tran ◽  
...  

As a promising candidate for expanding the capacity of drug loading in silica nanoplatforms, hollow mesoporous silica nanoparticles (HMSNs) are gaining increasing attention. In this study, porous nanosilica (PNS) and HMSNs were prepared by the sol-gel method and template assisted method, then further used for Rhodamine (RhB) loading. To characterize the as-synthesized nanocarriers, a number of techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption-desorption isotherms, dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR) were employed. The size of HMSN nanoparticles in aqueous solution averaged 134.0 ± 0.3 nm, which could be adjusted by minor changes during synthesis, whereas that of PNS nanoparticles was 63.4 ± 0.6 nm. In addition, the encapsulation of RhB into HMSN nanoparticles to form RhB-loaded nanocarriers (RhB/HMSN) was successful, achieving high loading efficiency (51.67% ± 0.11%). This was significantly higher than that of RhB-loaded PNS (RhB/PNS) (12.24% ± 0.24%). Similarly, RhB/HMSN also possessed a higher RhB loading content (10.44% ± 0.02%) compared to RhB/PNS (2.90% ± 0.05%). From those results, it is suggested that prepared HMSN nanocarriers may act as high-capacity carriers in drug delivery applications.

2011 ◽  
Vol 306-307 ◽  
pp. 1275-1279 ◽  
Author(s):  
Ning Qi Luo ◽  
Zhan Yun Huang ◽  
Ping Luo ◽  
Yuan Zhi Shao ◽  
Di Hu Chen

We first synthesized gadolinium oxide (Gd2O3) by a modified “polyol” strategy and then embedded it into mesoporous silica by a simple self-assembly sol-gel reaction. Scanning electron microscope (SEM) results show that the samples have good sphericity and good dispersibility. The structure of mesoporous silica was characterized by transmission electron microscopy (TEM) and small-angle X-ray diffraction (SAXRD). Results show that the mesoporous structure has not been destroyed after gadolinium oxide imbedding. The ratio of gadolinium and silica was determined by the mean of energy dispersive spectroscopy (EDS).


2011 ◽  
Vol 236-238 ◽  
pp. 1775-1778 ◽  
Author(s):  
Li Hua Dong ◽  
Tao Liu ◽  
Li Zhang ◽  
Yan Sheng Yin

In the present study, we report the preparation of silver nanocrystals encapsulated in mesoporous silica nanoparticles (Ag-MSN) with increased stability and enhanced anti-bacterial potency. The morphology of the nanoparticles was characterized by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses proved that the silver nanocrystals were truly embedded in the mesoporous silica nanoparticles. The antibacterial effect of silver nanoparticles was proved by plate count method and bacterial growth curve. Moreover, the marine bacterium V. natriegens showed weak attachment to the aluminum coated with Ag -MSN. The mechanism of reducing microbiological adhesion was also discussed.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Xinyue Huang ◽  
Danielle Paixão Cavalcante ◽  
Helen E Townley

AbstractNanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200–400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaodong She ◽  
Lijue Chen ◽  
Chengpeng Li ◽  
Canzhong He ◽  
Li He ◽  
...  

Hollow mesoporous silica nanoparticles were successfully fabricated and functionalized with appropriate silanes. After modifications, amine, carboxyl, cyano, and methyl groups were grafted onto the nanoparticles and all functionalized hollow mesoporous silica nanoparticles maintained a spherical and hollow structure with a mean diameter of ~120 nm and a shell thickness of ~10 nm. The loading capacity of the hollow mesoporous silica nanoaprticles to the anticancer drug, 5-fluorouracil, can be controlled via precise functionalization. The presence of amine groups on the surface of nanoparticles resulted in the highest loading capacity of 28.89%, due to the amine functionalized nanoparticles having a similar hydrophilicity but reverse charge to the drug. In addition, the change in pH leads to the variation of the intensity of electrostatic force between nanoparticles and the drug, which finally affects the loading capacity of amine functionalized hollow mesoporous silica nanoparticles to some extent. Higher drug loading was observed at pH of 7.4 and 8.5 as 5-fluorouracil becomes more deprotonated in alkaline conditions. The improved drug loading capacity by amine functionalized hollow mesoporous silica nanoparticles has demonstrated that they can become potential intracellular 5-fluorouracil delivery vehicles for cancers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1293
Author(s):  
Lanying Guo ◽  
Jiantao Ping ◽  
Jinglei Qin ◽  
Mu Yang ◽  
Xi Wu ◽  
...  

Although hollow mesoporous silica nanoparticles (HMSNs) have been intensively studied as nanocarriers, selecting the right HMSNs for specific drugs still remains challenging due to the enormous diversity in so far reported HMSNs and drugs. To this end, we herein made a comprehensive study on drug loading in HMSNs from the viewpoint of impacting factors and loading efficiency. Specifically, two types of HMSNs with negative and positive zeta potential were delicately constructed, and three categories of drugs were selected as delivery targets: highly hydrophobic and lipophobic (oily), hydrophobic, and hydrophilic. The results indicated that (i) oily drugs could be efficiently loaded into both of the two HMSNs, (ii) HMSNs were not good carriers for hydrophobic drugs, especially for planar drugs, (iii) HMSNs had high loading efficiency towards oppositely charged hydrophilic drugs, i.e., negatively charged HMSNs for cationic molecules and vice versa, (iv) entrapped drugs would alter zeta potential of drug-loaded HMSNs. This work may provide general guidelines about designing high-payload HMSNs by reference to the physicochemical property of drugs.


2020 ◽  
Vol 58 (1) ◽  
pp. 39 ◽  
Author(s):  
Ngoc Tram Nguyen Thi ◽  
Dai Hai Nguyen

Mesoporous silica nanoparticles (MSNs) have attracted significant attention from researchers thanks to their high surface area and pore volume, which can increase drug loading capacity. Moreover, MSNs, with their biocompatibility and ease of surface functionalization, are seen as potential drug delivery system. However, the loading of drug into MSNs system still needs further improvement. In this study, hollow mesoporous silica nanoparticles (HMSNs) were fabricated in order to increase the drug loading capacity of nanosilica materials. The synthesized HMSNs possessed inner hollow cores that could remarkably raise the total pore volume and thus improve the capacity for cargo loading. HMSNs were synthesized according to the hard-template method with three main steps: (1) forming of solid SiO2 nanoparticles as templates, (2) forming of core-shell structure by coating MSN layers onto the templates, and (3) forming of hollow core structure by etching away the solid template. The HMSNs product was characterized by TEM, XRD, TGA and FTIR. In addition, drug loading capacity of the material was evaluated with doxorubicin as model drug. The results indicated remarkable improvement in drug loading capacity, compared to MSN sample. Cell assays on cancer lines showed high biocompatibility. These results demonstrated the potential of HMSNs in the delivery of anticancer agents.


2021 ◽  
Author(s):  
PRIYADHARSINI K ◽  
ANBUCHEZHIYAN M ◽  
SANGEETHA K ◽  
SENGUTTUVAN N ◽  
RAJENDRAN SRIBA

Abstract Herein, a biocompatible and nontoxicity novel type of hydrophobic and hydrophilic co-delivery systems based on co-polymer chitosan-graft-PMMA (ch-g-PMMA) modified Mesoporous silica nanoparticles (MSNPs) for cancer therapy was prepared. The pores of MSNPs were loaded with curcumin (CUR) and doxorubicin (DOX) with co-polymer ch-g-PMMA were gated the pores of MSNPs to prevent the release of drugs. These synthesized ch-g-PMMA/MSNPs dual drug-loaded are effectively allowed for co-delivery of drug combinations with improved efficacy. The dual drug loaded MSNPS were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy (UV-Vis), Transmission electron microscope (TEM) and Brunauer–Emmett–Teller (BET) analysis. The TEM and XRD results proved the successful loading of drugs into the pores of hexagonal structure MSNPs with size ~180nm, CUR and DOX were released from the MSNPs only in acid –triggered manner. The cytotoxicity studied were carried out for ch-g-PMMA/MSNPs dual drug-loaded against adenocarcinoma gastric cell line (AGS) shows that MSNPs was highly biocompatible and well suitable for drug carrier.


Sign in / Sign up

Export Citation Format

Share Document