scholarly journals Development of Test Procedures Based on Chaotic Advection for Assessing Polymer Performance in High-Solids Tailings Applications

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 731
Author(s):  
Allan Costine ◽  
Phillip Fawell ◽  
Andrew Chryss ◽  
Stuart Dahl ◽  
John Bellwood

Post-thickener polymer addition to initiate rapid tailings dewatering has gained considerable interest for tailings storage facility (TSF) management. However, the highly viscous and non-Newtonian rheology of dense suspensions presents unique challenges for mixing with polymer solutions. Such mixing is highly inefficient, often resulting in polymer overdosing and wide variations in deposited tailings characteristics, with the potential to significantly compromise TSF performance. In this study, a new type of mixer based on the principles of chaotic advection was used for treating kaolin suspensions with high molecular weight (MW) anionic copolymer solutions. Chaotic advection imparts efficient mixing by gently stretching and folding flows in a controlled manner, as opposed to random, high-shear flows associated with turbulent mixing, and this lower shear stress allows for the controlled formation of larger aggregate structures with vastly improved dewatering characteristics. A pre-conditioning pipe reactor prior to this mixer can also be advantageous in terms of providing a short burst of high shear for initial polymer distribution. Seven acrylamide/acrylate copolymers of a fixed anionic charge density (30%) spanning a distinct MW range, as characterized by intrinsic viscosity, were applied at elevated dosages to high-solids (20–30 wt %) kaolin suspensions in continuous flow through the chaotic mixer described above. Medium-to-high MW polymers were generally preferred, with further increases in MW resulting in significantly diminished dewatering outcomes. Direct analysis of polymer solution properties through oscillatory rheology gave a better indication of a polymer’s potential performance compared with intrinsic viscosity, offering a more robust basis for polymer selection. This represented the first systematic study into the effects of polymer properties on deposition behavior after dosing at high solids, which was only possible through the ability to apply controlled shear across the entire suspension during sample preparation.

1982 ◽  
Vol 14 (6-7) ◽  
pp. 475-489 ◽  
Author(s):  
H W Campbell ◽  
P J Crescuolo

Rheological measurements were conducted on a variety of anaerobically digested sewage sludges to evaluate the potential use of rheology in describing the effects of chemical conditioning on the physical characteristics of sludges. The objectives of the study were to evaluate the influence of the method of chemical conditioning on rheological measurements; to determine the response of the viscometer system to changes in the instrument variables; and to evaluate interrelationships between rheology and other physical properties. All rheological measurements were made using a coaxial rotational viscometer. Evaluation of a variety of test procedures identified that both the method of adding chemical conditioners, and the acceleration rate of the rotational viscometer, could significantly alter the shape of the rheograms. A suggested methodology was identified and selected samples were analyzed in triplicate to test the reproducibility of the procedures. Existing mathematical models do not adequately describe the variety of flow behaviour patterns observed with sewage sludge. The concepts of yield stress and apparent viscosity also have limited value due to problems of definition and calculation. A parameter termed the “instantaneous viscosity”, defined as the derivative of the flow curve, is suggested as being more suitable for describing sludge behaviour. The relationships between chemical conditioning, particle size distribution and applied shear were explored. As polymer addition increased, the sludge particles became more susceptible to shear breakup. The extent of particle size reduction was a function of the rate of shear and the time during which the shear was maintained.


2020 ◽  
Author(s):  
Junha Kim ◽  
Haemyeong Jung

<p>The lattice preferred orientation(LPO) of amphibole has a large effect on seismic anisotropy in the crust. Previous studies have reported four LPO types (I–IV) of amphibole, but the genesis of type IV LPO, which is characterized by [100] axes aligned in a girdle subnormal to the shear direction, is unknown. In this study, shear deformation experiments on amphibolite were conducted to find the genesis of type IV LPO at high pressure (0.5 GPa) and temperature (500–700 °C). The type IV LPO was found under high shear strain (γ > 3.0) and the sample exhibited grains in a range of sizes but generally smaller than the grain size of samples with lower shear strain. The seismic anisotropy of type IV LPO is lower than in types I-III. The weak seismic anisotropy of highly deformed amphibole could explain weak seismic anisotropy observed in the middle crust.</p>


2019 ◽  
Vol 147 (10) ◽  
pp. 3595-3607 ◽  
Author(s):  
Sarah D. Ditchek ◽  
Kristen L. Corbosiero ◽  
Robert G. Fovell ◽  
John Molinari

Abstract While the frequency and structure of Atlantic basin tropical cyclone diurnal cooling and warming pulses have recently been explored, how often diurnal pulses are associated with deep convection was left unanswered. Here, storm-relative, GridSat-B1, 6-h IR brightness temperature difference fields were supplemented with World Wide Lightning Location Network (WWLLN) data to answer that question. Electrically active, long-lived cooling and warming pulses were defined objectively by determining critical thresholds for the lightning flash density, areal coverage, and longevity within each pulse. Pulses with lightning occurred 61% of the time, with persistently electrically active pulses (≥9 h, ACT) occurring on 38% of pulse days and quasi–electrically active pulses (3–6 h, QUASI) occurring on 23% of pulse days. Electrically inactive pulses (<3 h, INACT) occurred 39% of the time. ACT pulse days had more pulses located right-of-shear, the preferred quadrant for outer-rainband lightning activity, and were associated with more favorable environmental conditions than INACT pulse days. Cooling pulses were more likely to occur in lower-shear environments while warming pulses were more likely to occur in high-shear environments. Finally, while the propagation speeds of ACT and INACT cooling pulses and ACT warming pulses did lend support to the recent gravity wave and tropical squall-line explanations of diurnal pulses, the INACT warming pulses did not and should be studied further.


Allergy ◽  
2002 ◽  
Vol 57 (1) ◽  
pp. 45-51 ◽  
Author(s):  
K. Brockow ◽  
A. Romano ◽  
M. Blanca ◽  
J. Ring ◽  
W. Pichler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document