scholarly journals Diffusion Bonding of Al–Fe Enhanced by Gallium

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 824
Author(s):  
Asmawi Ismail ◽  
Warda Bahanan ◽  
Patthi Bin Hussain ◽  
Asmalina Mohamed Saat ◽  
Nagoor Basha Shaik

In this research, diffusion bonding was carried out to produce transition joints between mild steel A36 (Fe A36) and aluminium Al 5083 (AA5083) with the presence of gallium (Ga) as an interlayer between the two faying surfaces. The microstructural development and interfacial growth of intermetallic compounds at the interface layer between Fe A36 and AA5083 after the diffusion bonding process were investigated. The joining was performed by clamping the two materials with a Ga interlayer and then heated in a furnace. The interlayer developed from this diffusion heating in air condition provides an average thickness of 30 μm. Characterization of intermetallic compounds was conducted using SEM-EDX and XRD. The results showed that SEM-EDX confirmed the occurrence of interdiffusion of elements from Fe A36 and AA5083 present at interlayer. XRD analysis reveals the formation of Fe3Al at the diffusion layer.

2010 ◽  
Vol 89-91 ◽  
pp. 715-720 ◽  
Author(s):  
Paolo Deodati ◽  
Riccardo Donnini ◽  
Saulius Kaciulis ◽  
Alessio Mezzi ◽  
Roberto Montanari ◽  
...  

Roll Diffusion Bonding (RDB) is a new process, developed at C.S.M., for producing Ti composites reinforced by long fibres. The prototypal “diffusion bonding” plant permits to co-roll at high temperature in superplastic rolling field (under temperature and strain rate control) foils of titanium alloy and fabrics made of SiC monofilaments. This study evidenced that the Ti6Al4V-SiCf composite produced by roll-bonding exhibits superior mechanical properties with respect the same material prepared by Hot Isostatic Pressing (HIP) owing to the smaller grain size and the higher dislocation density.


2013 ◽  
Vol 750 ◽  
pp. 164-167
Author(s):  
Ming Zhao ◽  
Dong Ying Ju

This paper studies mainly the diffusion bonding of 3Y-TZP/SUS304 by using the chemical bonding method. In the bonding interface of 3Y-TZP and SUS304, the Ti-Cu powder/sheet was used as bonding materials. In bonding process, multi-alloy with Fe-Ti and Fe-Cu have been confirmed by Electron Probe Micro-Analyzer (EPMA) determination. Through the microstructure observed by AFM and SEM, bonding boundaries of 3Y-TZP/SUS304 by Ti-Cu powder/sheet had good formation. The distribution of the residual stress on near interface was measured by XRD method. By using of these results, the mechanism of the ceramic and stainless steel was discussed.


Author(s):  
Jafar Javadpour ◽  
Bradley L. Thiel ◽  
Sarikaya Mehmet ◽  
Ilhan A. Aksay

Practical applications of bulk YBa2Cu3O7−x materials have been limited because of their inadequate critical current density (jc) and poor mechanical properties. Several recent reports have indicated that the addition of Ag to the YBa2Cu3O7−x system is beneficial in improving both mechanical and superconducting properties. However, detailed studies concerning the effect of Ag on the microstructural development of the cermet system have been lacking. Here, we present some observations on the microstructural evolution in the YBa2Cu3O7−x/Ag composite system.The composite samples were prepared by mixing various amounts (2.5 - 50 wt%) AgNO3 in the YBa2Cu3O7−x nitrate precursor solution. These solutions were then spray dried and the resulting powders were either cold pressed or tape cast. The microstructures of the sintered samples were analyzed using SEM (Philips 515) and an analytical TEM (Philips 430T).The SEM micrographs of the compacts with 2.5 and 50 wt% Ag addition sintered at 915°C (below the melting point of Ag) for 1 h in air are displayed in Figs. 1 and 2, respectively.


2020 ◽  
Vol 849 ◽  
pp. 113-118
Author(s):  
Yayat Iman Supriyatna ◽  
Slamet Sumardi ◽  
Widi Astuti ◽  
Athessia N. Nainggolan ◽  
Ajeng W. Ismail ◽  
...  

The purpose of this study is to characterize Lampung iron sand and to conduct preliminary experiments on the TiO2 synthesis which can be used for the manufacturing of functional food packaging. The iron sand from South Lampung Regency, Lampung Province that will be utilized as raw material. The experiment was initiated by sieving the iron sand on 80, 100, 150, 200 and 325 mesh sieves. Analysis using X-Ray Fluorescence (XRF) to determine the element content and X-Ray Diffraction (XRD) to observe the mineralization of the iron sand was conducted. The experiment was carried out through the stages of leaching, precipitation, and calcination. Roasting was applied firstly by putting the iron sand into the muffle furnace for 5 hours at a temperature of 700°C. Followed by leaching using HCl for 48 hours and heated at 105°C with a stirring speed of 300 rpm. The leaching solution was filtered with filtrate and solid residue as products. The solid residue was then leached using 10% H2O2 solution. The leached filtrate was heated at 105°C for 40 minutes resulting TiO2 precipitates (powder). Further, the powder was calcined and characterized. Characterization of raw material using XRF shows the major elements of Fe, Ti, Mg, Si, Al and Ca. The highest Ti content is found in mesh 200 with 9.6%, while iron content is about 80.7%. While from the XRD analysis, it shows five mineral types namely magnetite (Fe3O4), Rhodonite (Mn, Fe, Mg, Ca) SiO3, Quart (SiO2), Ilmenite (FeOTiO2) and Rutile (TiO2). The preliminary experiment showed that the Ti content in the synthesized TiO2 powder is 21.2%. The purity of TiO2 is low due to the presence of Fe metal which is dissolved during leaching, so that prior to precipitation purification is needed to remove impurities such as iron and other metals.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


Sign in / Sign up

Export Citation Format

Share Document