scholarly journals Mechanism of Permeability and Oil Recovery during Fracturing in Tight Oil Reservoirs

Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 972
Author(s):  
Yujie Bai ◽  
Guangsheng Cao ◽  
Guanglei Wei ◽  
Xiaohan Nan ◽  
Qingchao Cheng ◽  
...  

In this study, the effect of fracturing fluid on the permeability of tight oil reservoirs is analyzed through oil absorption. The mechanism of permeation and absorption in tight oil reservoirs was studied using the molecular dynamics simulation of fluid flow through fractures in porous media containing crude oil. The influence of surfactants on the adsorption characteristics of crude oil formations on rock walls was also examined. The research results show that the introduction of the appropriate surfactant to the fracturing fluid could accelerate the rate of percolation and recovery as well as improve the recovery rate of absorption. The optimal concentration of polyoxyethylene octyl phenol ether-10 (OP-10) surfactant in the fracturing fluid was 0.9%. When the percolation reached a certain stage, the capillary forces in the crude oil and percolation medium in the pore stabilized; accordingly, the crude oil from the pore roar should be discharged at the earliest. The fluid flow through the fracture effectively carries the oil seeping out near the fractured wall to avoid the stability of the seepage and absorption systems. The surfactant can change the rock absorbability for crude oil, the result of which is that the percolating liquid can adsorb on the rock wall, thus improving the discharge of crude oil. The results of this study are anticipated to significantly contribute to the advancement of oil and gas recovery from tight oil reservoirs.


2021 ◽  
Vol 207 ◽  
pp. 109050
Author(s):  
Linkai Li ◽  
Xiao Guo ◽  
Ming Zhou ◽  
Zhangxin Chen ◽  
Lin Zhao ◽  
...  


Author(s):  
Muhend Milad ◽  
Radzuan Junin ◽  
Akhmal Sidek ◽  
Abdulmohsin Imqam ◽  
Mohamed Tarhuni


2019 ◽  
Author(s):  
Zhaojie Song ◽  
Yuzhen Li ◽  
Yilei Song ◽  
Baojun Bai ◽  
Jirui Hou ◽  
...  


2015 ◽  
Author(s):  
Yi Xiong ◽  
Phil Winterfeld ◽  
Cong Wang ◽  
Zhaoqin Huang ◽  
Yu-Shu Wu


2021 ◽  
Vol 21 (1) ◽  
pp. 615-622
Author(s):  
Min Wang ◽  
Chenxue Jiao ◽  
Nengwu Zhou ◽  
Chuanming Li ◽  
Mingming Tang ◽  
...  

Hydraulic fracturing and acidification are among the most commonly used methods for stimulating the tight oil reservoirs and improving oil recovery. Therefore, examining the effects of water immersion and acidification on tight oil reservoirs is important for oilfield development plans. Core flooding testing, which analyzes the influence of core permeability variations before and after acid injection on the reservoir quality, is the conventional research method; however, it is difficult to observe the changes in minerals and pores caused by acidulation and water immersion in situ. In this study, we conduct field-emission scanning electron microscopy (FE-SEM), MAPS, the quantitative evaluation of minerals through scanning electronic microscopy (QEM-SCAN), and describe the types of pores in tight sandstone. Further, the effects of water immersion and acidification on pores in tight sandstone were studied. The results indicate that: (1) intergranular pores, intragranular dissolution pores, clay mineral intercrystalline pores, and micro-cracks were developed in the Gaotaizi tight sandstone in Songliao Basin, with the intergranular pores observed to be dominant; (2) the hydration of clay minerals induced by water injection caused plugging of pores at the nanometer– micrometer scale, and plane porosity is slightly reduced (˜0.86%); (3) acidification resulted in the dissolution of carbonate minerals, increasing the porosity of the reservoir, therefore, the increase in porosity is influenced by the carbonate mineral content. We recommend that future studies should investigate the content, type, and distribution of carbonate minerals in the operation area. During the process of reservoir stimulation, such as acidification and CO2 injection- and-production, the influence of carbonate minerals dissolution on oil production should be considered.



Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhang Jie ◽  
Cai Ming-Jun ◽  
Ge Dangke ◽  
Lu Ning ◽  
Cheng Hai-Ying ◽  
...  

The CO2 huff-n-puff is an effective substitute technology to further improve oil recovery of natural fractured tight oil reservoirs after water flooding, for its high displacement efficiency and superior injectivity. The CO2 huff-n-puff process is influenced by many factors, such as miscible degree, complex fracture networks, and production schemes. What is worse, those influence facts affect each other making the process more complex. Many researchers concentrated on mechanisms and single sensitivity analysis of CO2 huff-n-puff process, whereas few optimized this process with the consideration of all influence factors and multiobjective to get favorable performance. We built multiobjective consisted of miscible degree, oil recovery, and gas replacing oil rate considering the aspects of CO2 flooding special characteristic, technical effectiveness, and economic feasibility, respectively. We have taken Yuan 284 tight oil block as a case, firstly investigated sensitivity analysis, and then optimized CO2 huff-n-puff process using orthogonal experiment design with multifactors and multiobjectives. The optimization results show CO2 huff-n-puff can significantly improve oil recovery by 8.87% original oil in place (OOIP) compared with water flooding, which offers guidelines for field operations.



Author(s):  
Mvomo Ndzinga Edouard ◽  
Pingchuan Dong ◽  
Chinedu J. Okere ◽  
Luc Y. Nkok ◽  
Abakar Y. Adoum ◽  
...  

AbstractAfter single-gas (SG) injection operations in tight oil reservoirs, a significant amount of oil is still unrecovered. To increase productivity, several sequencing gas injection techniques have been utilized. Given the scarcity of research on multiple-gas alternating injection schemes, this study propose an optimized triple-alternating-gas (TAG) injection for improved oil recovery. The performance of the TAG process was demonstrated through numerical simulations and comparative analysis. First, a reservoir compositional model is developed to establish the properties and composition of the tight oil reservoir; then, a suitable combination for the SG, double alternating gas (DAG), and TAG was selected via a comparative simulation process. Second, the TAG process was optimized and the best case parameters were derived. Finally, based on the oil recovery factors and sweep efficiencies, a comparative simulation for SG, DAG, and TAG was performed and the mechanisms explained. The following findings were made: (1) The DAG and TAG provided a higher recovery factor than the SG injection and based on recovery factor and economic advantages, CO2 + CH4 + H2S was the best choice for the TAG process. (2) The results of the sensitivity analysis showed that the critical optimization factors for a TAG injection scheme are the injection and the production pressures. (3) After optimization, the recovery factor and sweep efficiency of the TAG injection scheme were the best. This study promotes the understanding of multiple-gas injection enhanced oil recovery (EOR) and serves as a guide to field design of gas EOR techniques.



Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mingqiang Hao ◽  
Songlin Liao ◽  
Guangming Yu ◽  
Xinhui Lei ◽  
Yong Tang

In this paper, the sensitivity factors of CO2 huff-n-puff for multifractured horizontal wells (MFHWs) in tight oil reservoirs were investigated through an experimental test and numerical simulation. The pressure-volume-temperature (PVT) experiment and the slim tube experiment are used to understand the interaction mechanism between CO2 and crude oil, and the minimum miscibility pressure (MMP) of the CO2-crude oil system is 17 MPa. The single-well model was firstly established to analyze the sensitivity factors on production performance of MFHWs by using CO2 huff-n-puff. The controlling factors of CO2 huff-n-puff for MFHWs in tight oil reservoirs were divided into three categories (i.e., reservoir parameters, well parameters, and injection-production parameters), and the impact of individual parameter on well performance was discussed in detail. The range of reservoir parameters suitable for CO2 huff-n-puff of MFHWs is obtained. The reservoir permeability is from 0.1 mD to 1 mD, the reservoir thickness changes from 10 m to 30 m, and the reservoir porosity is from 7% to 12%. Based on the reservoir parameters of the target reservoir, the reasonable well and fracture parameters are obtained. The sensitivity intensity was followed by the horizontal well length, fracture conductivity, fracture spacing, and fracture half-length. CO2 injection-production parameters are further optimized, and the sensitivity intensity was followed by the single-cycle cumulative CO2 injection rate, the soaking time, the injection rates, and the production rates. It provides a reference for parameter optimization of CO2 huff-n-puff for MFHWs in tight oil reservoirs.



Sign in / Sign up

Export Citation Format

Share Document