scholarly journals Electrochemiluminescence Enhancement and Particle Structure Stabilization of Polymer Nanoparticle by Doping Anionic Polyelectrolyte and Cationic Polymer Containing Tertiary Amine Groups and Its Highly Sensitive Immunoanalysis

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1054
Author(s):  
Noor Ul Ain ◽  
Tian-Yu Wang ◽  
Xiao-Ning Wu ◽  
Tong-Hong Wei ◽  
Jing-Shuo Zhang ◽  
...  

A doped polymer nanoparticle (dPNP) of electrochemiluminescence (ECL) was prepared via doping the anionic polyelectrolyte polyacrylic acid (PAA) and the cationic polymer poly-ethyleneimine (PEI) into the polymer nanoparticle (PNP), which was self-assembled by Ru(bpy)32+ derivative-grafted PAA (PAA–Ru) with both cations and anions. The good electrical conductivity of the doped polyelectrolyte PAA enhanced the ECL intensity of PNP to 109.1%, and the involvement of a large number of tertiary amine groups of the doped PEI further enhanced that to 127.3%; meanwhile, doping low-molecular-weight PEI into PNP, while simultaneously doping high-molecular-weight PAA, avoided the precipitation of PAA and PEI, due to interaction of the two oppositely charged polymers; and these also made the self-assembly procedure more effective and the nanoparticle structure more stable than PNP and also led to the production of rich residual PAA chains on the surface of dPNP. The storage results showed that the average hydrated particle diameter kept almost constant (197.5–213.1 nm) during 15-day storage and that the nanoparticles have rich surface charge of −11.47 mV (zeta potential), well suspension stability and good dispersity without detectable aggregation in the solution during the storage. Therefore, the nanoparticle is quite suitable for the antibody labeling, immunoassay and the storage. As a result, a high-sensitive ECL immunoassay approach with good precision, accuracy and selectivity was established and an ultra-low detection limit of 0.049 pg mL−1 (S/N = 3) for magnetic bead-based detection of Hepatitis B surface antigen was observed.

2015 ◽  
Vol 6 (30) ◽  
pp. 5362-5368 ◽  
Author(s):  
Qiang Fu ◽  
Thomas G. McKenzie ◽  
Shereen Tan ◽  
Eunhyung Nam ◽  
Greg G. Qiao

A novel tertiary amine catalyst and trithiocarbonate synergistic photo-induced controlled radical polymerization of methacrylates has been realized under mild UV irradiation, yielding polymethacrylates with low molecular weight distributions and excellent end-group fidelity.


2021 ◽  
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bozena Smreczak

<p>The objective of this paper was to investigate the molecular characterization of individual humic substances ( fulvic acids-FAs, humic ascids-HAs, and humins-HNs), which are the most reactive soil components and exhibit high sorption capacity in relation to various groups of organic contaminants. A wide spectrum of spectroscopic (UV-VIS, VIS-nearIR), as well as electrochemical (zeta potential, particle size diameter, polidyspersity index), methods were applied to find the relevant differences in the behavior, formation, composition and sorption properties of HS fractions derived from various mineral soils.</p><p>Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO.</p><p>Our study showed that significant differences in the molecular structures of FAs, HAs and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles.  </p><p>The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition and sorption properties, which reflects their binding potential to different group of organic contaminants, but the general properties of individual fractions are similar and do not depend on the type of soil.</p><p><em>Acknowledgement: The studies were supported from the National Science Centre project No. 2018/29/N/ST10/01320 “Analysis of the fractional composition and sorption properties of humic substances in relation to various groups of organic contaminants”</em></p>


2019 ◽  
Vol 10 (17) ◽  
pp. 2143-2151 ◽  
Author(s):  
Yan Zhang ◽  
Yue Xu ◽  
Chao Wei ◽  
Chuanhao Sun ◽  
Bingkun Yan ◽  
...  

A one-shot method was employed to synthesize ROS/pH responsive methoxy poly(ethylene glycol)-b-polycarbonate (mPEG-b-poly(MN-co-MSe)) with the selenide and tertiary amine groups situated on the backbone.


RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 1869-1876 ◽  
Author(s):  
Cuiqin Li ◽  
Peng Sun ◽  
Hongyang Yu ◽  
Na Zhang ◽  
Jun Wang

The intramolecular synergistic effects of two dendritic antioxidants between hindered phenol groups and tertiary amine groups were investigated using the DPPH˙ method and the oxygen uptake method.


1944 ◽  
Vol 79 (3) ◽  
pp. 267-283 ◽  
Author(s):  
W. M. Stanley

The sedimentation behavior of influenza virus in dilute solutions of electrolyte was found to be quite variable. At times the virus activity appeared to sediment at a rate comparable with that of particles about 80 to 120 mµ in diameter, at other times at a rate comparable with that of particles about 10 mµ in diameter, and at still other times the bulk of the activity appeared to sediment at a rate comparable with that of the larger particles and the residual activity at a rate comparable with that of the smaller particles. However, in the presence of a sucrose density gradient, the virus activity was always found to sediment with a rate comparable to that of particles about 80 to 120 mµ in diameter; hence it appeared that the variable sedimentation behavior in dilute electrolyte solution was due to convection or mechanical disturbances during centrifugation. About 30 per cent of the high molecular weight protein present in the allantoic fluid of chick embryos infected with the F 12 strain of influenza virus was found to consist of a component having a sedimentation constant of about 30 S, and hence a probable particle diameter of about 10 mµ. The residual protein of high molecular weight was present in the form of a component having a sedimentation constant of about 600 S, and hence a probable particle diameter of about 70 mµ. The proportion of the 30 S component in allantoic fluid of chick embryos infected with the PR8 strain of influenza virus was found to be considerably less. The 600 S and 30 S components of F 12 allantoic fluid were purified and separated by differential centrifugation. The purified preparations of the 600 S component were found to possess a specific virus activity from 100 to over 10,000 times that of the purified preparations of the 30 S component, the difference in activity apparently depending only on the degree of fractionation of the two components. The purified 30 S component was found to sediment normally in the presence of 12 per cent sucrose, whereas the small residual virus activity of such preparations was found to sediment in the presence of a sucrose density gradient with a rate comparable to that of much heavier particles. It is concluded that influenza virus activity is not associated with material having a particle diameter of about 10 mµ, but is associated solely with material having a sedimentation constant of about 600 S and hence a probable particle diameter of about 70 mµ.


An experimental investigation of the conditions necessary for the production of compact, single polymer molecules, in a form suitable for direct observation in the electron microscope, is described. Molecules are isolated by dispersing a dilute solution of the polymer as fine droplets on to a suitable substrate: ideally each droplet should contain either one or no polymer molecules. The solution is a mixture of two solvents, a good one and a poor one. Initially the good solvent predominates so that the probability of polymer aggregation is low. Preferential evaporation of the relatively volatile solvent on the substrate itself gives the poor solvent conditions needed for the formation of well-defined molecular spheres. Factors determining the choice of solvent, precipitant, and the composition of the mixture are discussed. There is little difficulty in obtaining single molecules with glassy amorphus polymers; rubbery polymers collapse and spherical molecules are formed only if the entire preparation is carried out at a temperature below that of the glass transition; crystalline polymers are not amenable to this technique. To obtain sufficient contrast the particles have to be shadowed and it is shown that, although certain dimensions are distorted by the metal coating, the shadow length faithfully represents the true particle diameter. Molecular weights, and their distribution, when of the order of a million and above, can readily be accurately determined. Conventional methods are unreliable in this region of high molecular weight.


Sign in / Sign up

Export Citation Format

Share Document