scholarly journals The Impacts of Tracking System Inaccuracy on CPV Module Power

Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1278
Author(s):  
Henrik Zsiborács ◽  
Nóra Baranyai ◽  
András Vincze ◽  
Philipp Weihs ◽  
Stefan Schreier ◽  
...  

The accuracy and reliability of solar tracking greatly impacts the performance of concentrator photovoltaic modules (CPV). Thus, it is of utmost significance to know how deviations in tracking influence CPV module power. In this work, the positioning characteristics of CPV modules compared to the focus points were investigated. The performance of CPV modules mounted on a dual-axis tracking system was analysed as a function of their orientation and inclination. The actual experiment was carried out with CPV cells of 3 mm in diameter. By using a dual tracking system under real weather conditions, the module’s position was gradually modified until the inclination differed by 5° relative to the optimal position of the focus point of the CPV module. The difference in inclination was established by the perfect perpendicularity to the Sun’s rays. The results obtained specifically for CPV technology help determine the level of accuracy that solar tracking photovoltaic systems are required to have to keep the loss in power yield under a certain level. Moreover, this power yield loss also demonstrated that the performance insensitivity thresholds of the CPV modules did not depend on the directions of the alterations in azimuthal alignment. The novelty of the research lies in the fact that earlier, no information had been found regarding the tracking insensitivity point in CPV technologies. A further analysis was carried out to compare the yield of CPV to other, conventional photovoltaic technologies under real Central European climate conditions. It was shown that CPV needs a sun tracking accuracy of at least 0.5° in order to surpass the yield of other PV technologies. Besides providing an insight into the tracking error values of solar tracking sensors, it is believed that the results might facilitate the planning of solar tracking sensor investments as well as the economic calculations related to 3 mm cell diameter CPV system investments.

Author(s):  
Kanhaiya Kumar ◽  
Lokesh Varshney ◽  
A. Ambikapathy ◽  
Vrinda Mittal ◽  
Sachin Prakash ◽  
...  

<p>The significance of the solar energy is to intensify the effectiveness of the Solar Panel with the use of a primordial solar tracking system. Here we propounded a solar positioning system with the use of the global positioning system (GPS) , artificial neural network (ANN) and image processing (IP) . The azimuth angle of the sun is evaluated using GPS which provide latitude, date, longitude and time. The image processing used to find sun image through which centroid of sun is calculated and finally by comparing the centroid of sun with GPS quadrate to achieve optimum tracking point. Weather conditions and situation observed through AI decision making with the help of IP algorithms. The presented advance adaptation is analyzed and established via experimental effects which might be made available on the memory of the cloud carrier for systematization. The proposed system improve power gain by 59.21% and 10.32% compare to stable system (SS) and two-axis solar following system (TASF) respectively. The reduced tracking error of IoT based Two-axis solar following system (IoT-TASF) reduces their azimuth angle error by 0.20 degree.</p>


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3308-3311

This paper presents the outline and execution of simple, easy and cheaper automatic dual axis solar tracking system using Arduino UNO as the control element and light detecting sensors (LDRS) as the sensing element. This project involves advanced level of technology to capture maximum amount of energy using sun’s radiations. The main purpose is to increase the efficiency of tracking system which can rotate in all four directions continuously according to intensity of radiations and for energy conversion. In this, the voltage from panel is calculated from time to time in an interval of 1hr and this voltage is used to sense the weather conditions and display the climatic temperatures


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5226
Author(s):  
Nurzhigit Kuttybay ◽  
Ahmet Saymbetov ◽  
Saad Mekhilef ◽  
Madiyar Nurgaliyev ◽  
Didar Tukymbekov ◽  
...  

Improving the efficiency of solar panels is the main task of solar energy generation. One of the methods is a solar tracking system. One of the most important parameters of tracking systems is a precise orientation to the Sun. In this paper, the performance of single-axis solar trackers based on schedule and light dependent resistor (LDR) photosensors, as well as a stationary photovoltaic installation in various weather conditions, were compared. A comparative analysis of the operation of a manufactured schedule solar tracker and an LDR solar tracker in different weather conditions was performed; in addition, a simple method for determining the rotation angle of a solar tracker based on the encoder was proposed. Finally, the performance of the manufactured solar trackers was calculated, taking into account various weather conditions for one year. The proposed single-axis solar tracker based on schedule showed better results in cloudy and rainy weather conditions. The obtained results can be used for designing solar trackers in areas with a variable climate.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Rahate Ahmed ◽  
Yeongmin Kim ◽  
Zeeshan ◽  
Muhammad Uzair Mehmood ◽  
Hyun Joo Han ◽  
...  

Abstract A strategy for precise solar tracking has been developed using feedback signals from seven photosensors in conjunction with the operation of an active daylighting system. The tracking system was composed of a microcontroller, two stepper motors, photosensors, a grooves-in Fresnel lens concentrator, and a glass optical fiber cable. A robust control was implemented using cadmium sulfide (CdS) sensors to track the sun’s path precisely from sunrise to sunset. To avoid the cloud effect, two separate sensors were installed apart from the main tracking sensors. The control system was allowed to track the sun’s position if clouds covered the sky continuously for less than approximately 70 min. To analyze the performance of the solar tracker for daylighting applications, a series of experiments were performed in different weather conditions where the accuracy and effectiveness of the present solar tracking control were confirmed.


2019 ◽  
Vol 9 (16) ◽  
pp. 3392 ◽  
Author(s):  
Henrik Zsiborács ◽  
Nóra Hegedűsné Baranyai ◽  
András Vincze ◽  
István Háber ◽  
Philipp Weihs ◽  
...  

This article examines the positioning features of polycrystalline, monocrystalline, and amorphous silicon modules relative to the focus points of concentrator photovoltaic modules under real meteorological conditions using a dual tracking system. The performance of the photovoltaic modules mounted on a dual-axis tracking system was regarded as a function of module orientation where the modules were moved step by step up to a point where their inclination differed by 30° compared to the ideal focus point position of the reference concentrator photovoltaic module. The inclination difference relative to the ideal focus point position was determined by the perfect perpendicularity to the rays of the sun. Technology-specific results show the accuracy of a sun tracking photovoltaic system that is required to keep the loss in power yield below a defined level. The loss in power yield, determined as a function of the measurement results, also showed that the performance insensitivity thresholds of the monocrystalline, polycrystalline, and amorphous silicon modules depended on the direction of the alignment changes. The performance deviations showed clear azimuth dependence. Changing the tilt of the modules towards north and south showed little changes in results, but inclination changes towards northwest, southwest, southeast, and northeast produced results diverging more markedly from each other. These results may make the planning of solar tracking sensor investments easier and help with the estimate calculations of the total investment and operational costs and their return concerning monocrystalline, polycrystalline, and amorphous silicon photovoltaic systems. The results also provide guidance for the tracking error values of the solar tracking sensor.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Zhengliang Li ◽  
Mingxian Chen ◽  
Husheng Meng ◽  
Zehui Chang ◽  
Hongfei Zheng

A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jiantao Zheng ◽  
Junjie Yan ◽  
Jie Pei ◽  
Guanjie Liu

Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon.


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Agung Wijaya ◽  
Bengawan Alfaresi ◽  
Feby Ardianto

Solar cell tracking system is a system that uses the latest technology with combining solar tracking, the intensity of sunlight absorbed by solar cells can be optimized automatically. The purpose of this study is to make the Arduino-based solar monitoring system and load protection tool. The device is also equipped with an LDR sensor that detects the presence of sunlight, sends data from the LDR to Arduino and delivers signals to linear actuators. When the charge supplied by the battery exceeds the capacity of the battery, the INA219 sensor detects overload and a signal sent to Arduino asking for a relay to release the load. The results showed that tracking solar cell systems were successful in improving the efficiency of solar cells with an average power yield of 0.87 ampere of 12.62 watts from before without tracking the average obtained 0.62 ampere 8.83 atts. The performance of the protection system indicates that the load is cut off when the charging current exceeds the specified limit of 2.6 ampere.


Sign in / Sign up

Export Citation Format

Share Document