scholarly journals Experimental Study and Mathematical Modeling of Convective Thin-Layer Drying of Apple Slices

Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1562
Author(s):  
Mohammad Jafar Royen ◽  
Abdul Wasim Noori ◽  
Juma Haydary

This work represents an experimental study and mathematical modeling of convective apple slice drying. The influence of multiple process parameters such as temperature, air humidity, air velocity and slice thickness on process kinetics, product water activity and parameters of empirical models has been investigated. Drying characteristics of apple slices were monitored at temperatures of 40, 45 and 50 °C, air velocities of 0.6, 0.85 and 1.1 m/s., slice thicknesses of 4, 6, 8, 10 and 12 mm, and in relative air humidity ranges of 25–28, 35–38 and 40–45%. During the process, samples were dried from an initial moisture content of 86.7% to that of 20% (w.b), corresponding to product water activity of 0.45 ± 0.05. By increasing the temperature from 40 to 50 °C, the time for reaching the required product water activity decreased by about 300 min. Sample thickness is the most significant parameter; by increasing the slice thickness from 4 to 12 mm, the time required to achieve the required water activity increased by more than 500 min. For all experimental runs, parameters of five different thin-layer empirical models were estimated. A thin-layer model sensible to process conditions such as temperature, air velocity, layer thickness and air relative humidity was developed and statistically analyzed.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Masnaji R. Nukulwar ◽  
Vinod B. Tungikar

Abstract The objective of this study is to find an optimized thin-layer mathematical model suitable for drying kinetics of turmeric. Turmeric has a high moisture content which necessitates effective drying. A 10 kg, sample batch, of turmeric was dried in a solar dryer. Drying air temperatures and air velocity were observed in the range of 55 °C–68 °C and 0.7 m/s–1.4 m/s, respectively, in the drying experiments. It is seen that the moisture content of the turmeric is reduced from 77% to 11.93% in 22 h when compared with open sun drying, which required 60 h for the same reduction in the moisture content. Scheffler dish was used to generate steam for the dryer. Seven thin-layer mathematical models, cited in the literature, had been used for the study. These models were applied for different trays placed in the dryer. The result of the research and experimentation showed that the Page model fits best for drying in the steam-based dryer and open sun drying. Experimental results showed 63.33% saving in drying time, and the drying efficiency was found as 29.85%. Uncertainty in the drying efficiency was observed as 0.67%. Experimental investigation and the findings from the mathematical modeling are presented in this paper.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 16-20 ◽  
Author(s):  
Juan Carlos Gómez-Daza ◽  
Claudia Isabel Ochoa-Martínez

This article presents a mathematical model for drying thin layer carrot slices (Daucus carota) using a heat pump dryer (HPD). To select the equation that best describes the drying curve, 10 semi-theoretical and/or empirical models were evaluated. The parameters were determined using the Sigma-Plot® program, and their goodness of fit was compared using the correlation coefficient, R<sup>2</sup>; Chi-squared, <span style="font-family: symbol;">C</span><sup>2</sup>; standard error of the estimate (SEE) and root mean square error (RMSE). Additionally, the effect of the relative moisture, sample thickness and air velocity on the effective diffusivity of the process was evaluated using a response surface tool. Although all the models correctly fit the experimental data, based on the statistical tests, the Wang-Singh model was selected as the best.


2010 ◽  
Vol 5 (4) ◽  
pp. 1379-1383 ◽  
Author(s):  
Indrajit D. Thorat ◽  
Debabandya Mohapatra ◽  
R. F. Sutar ◽  
S. S. Kapdi ◽  
Dipali D. Jagtap

2012 ◽  
Vol 3 (2) ◽  
pp. 297-312
Author(s):  
A. M. Matouk ◽  
H. N. Abd El-Mageed ◽  
A. Tharwat ◽  
S. E. El-Far

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1051
Author(s):  
Gennady Kolesnikov ◽  
Rudolf Meltser

Experimental research of bone strength remains costly and limited for ethical and technical reasons. Therefore, to predict the mechanical state of bone tissue, as well as similar materials, it is desirable to use computer technology and mathematical modeling. Yet, bone tissue as a bio-mechanical object with a hierarchical structure is difficult to analyze for strength and rigidity; therefore, empirical models are often used, the disadvantage of which is their limited application scope. The use of new analytical solutions overcomes the limitations of empirical models and significantly improves the way engineering problems are solved. Aim of the paper: the development of analytical solutions for computer models of the mechanical state of bone and similar materials. Object of research: a model of trabecular bone tissue as a quasi-brittle material under uniaxial compression (or tension). The new ideas of the fracture mechanics, as well as the methods of mathematical modeling and the biomechanics of bone tissues were used in the work. Compression and tension are considered as asymmetric mechanical states of the material. Results: a new nonlinear function that simulates both tension and compression is justified, analytical solutions for determining the effective and apparent elastic modulus are developed, the residual resource function and the damage function are justified, and the dependences of the initial and effective stresses on strain are obtained. Using the energy criterion, it is proven that the effective stress continuously increases both before and after the extremum point on the load-displacement plot. It is noted that the destruction of bone material is more likely at the inflection point of the load-displacement curve. The model adequacy is explained by the use of the energy criterion of material degradation. The results are consistent with the experimental data available in the literature.


2019 ◽  
Vol 37 (4) ◽  
pp. 4819-4826 ◽  
Author(s):  
Lindong Liu ◽  
Jingwen Dai ◽  
Junwei Yang ◽  
Miao Jin ◽  
Wei Jiang ◽  
...  

2012 ◽  
Vol 518-523 ◽  
pp. 4819-4822
Author(s):  
Jin Feng Liu ◽  
Shun Yang ◽  
Guo Qiang Ou

The deposition prediction of debris flow hazardous area is very important for organizing and implementing debris flow disaster prevention and reduction. This paper selected the data base from laboratory experiments and applied the multiple regression statistical method to establish a series of empirical calculation models for delimiting the debris flow hazardous areas on the alluvial fan. The empirical models for predicting the maximum deposition length (Lc), the maximum deposition width (Bmax) and the maximum deposition thichness (Z0) under the condition of different debris flow volumes (V), densities (rm) and slopes of accumulation area (θd) were establised. And the verification results indicated that the established models can predict the debris flow hazards area with the average accuracy of 86%.


Sign in / Sign up

Export Citation Format

Share Document