scholarly journals Analysis and Optimization of Two Film-Coated Tablet Production Processes by Computer Simulation: A Case Study

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Stefanie Hering ◽  
Nico Schäuble ◽  
Thomas M. Buck ◽  
Brigitta Loretz ◽  
Thomas Rillmann ◽  
...  

Increasing regulatory demands are forcing the pharmaceutical industry to invest its available resources carefully. This is especially challenging for small- and middle-sized companies. Computer simulation software like FlexSim allows one to explore variations in production processes without the need to interrupt the running process. Here, we applied a discrete-event simulation to two approved film-coated tablet production processes. The simulations were performed with FlexSim (FlexSim Deutschland—Ingenieurbüro für Simulationsdienstleistung Ralf Gruber, Kirchlengern, Germany). Process visualization was done using Cmap Tools (Florida Institute for Human and Machine Cognition, Pensacola, FL, USA), and statistical analysis used MiniTab® (Minitab GmbH, Munich, Germany). The most critical elements identified during model building were the model logic, operating schedule, and processing times. These factors were graphically and statistically verified. To optimize the utilization of employees, three different shift systems were simulated, thereby revealing the advantages of two-shift and one-and-a-half-shift systems compared to a one-shift system. Without the need to interrupt any currently running production processes, we found that changing the shift system could save 50–53% of the campaign duration and 9–14% of the labor costs. In summary, we demonstrated that FlexSim, which is mainly used in logistics, can also be advantageously implemented for modeling and optimizing pharmaceutical production processes.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6752-6765
Author(s):  
Roman Bambura ◽  
Erika Sujová ◽  
Helena Čierna

Computer simulation methods are currently used to simulate production processes and optimize production systems. Computer simulation is one of the most effective tools for implementation of Industry 4.0 principles in industrial practice. This research focused on the optimization of production processes in furniture production using simulation, which is an innovative method of production optimization for furniture manufacturers. The aim of this research was to improve the production system of Slovak furniture manufacturing enterprise by creating a discrete event simulation model of production based on the analysis of its current state. Improvement indicators are specific parameters of the production system, which primarily include material flow, productivity, and workload utilization. First, with the use of Tecnomatix Plant Simulation software and the collected real production data, the original production system processes were simulated and analyzed. Second, the incorporation of more powerful devices was proposed to improve the production line. Third, the proposed improvements were simulated and analyzed. The result of this research was a statistical comparison of the parameters of the current production line and the proposed production improvements.


Author(s):  
Martina Kuncova ◽  
Katerina Svitkova ◽  
Alena Vackova ◽  
Milena Vankova

The year 2020 was very challenging for everyone due to the COVID-19 pandemic. Many people turn their lives upside down from day to day. Politicians had to impose completely unprecedented measures, and doctors immediately had to adapt to the huge influx of patients and the massive demand for testing. Of course, not all processes could be planned completely efficiently, given that the situation literally changes from minute to minute, but sometimes better planning could improve the real processes. This contribution deals with the application of simulation software SIMUL8 to the analysis of the COVID-19 sample collection process in a drive-in point in a hospital. The main aim is to create a model based on the real data and then to find out the suitable number of other staff (medics) helping a doctor during the process to decrease the number of unattended patients and their waiting times.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 187-194 ◽  
Author(s):  
Armaghan Kosari Moghaddam ◽  
Hassan Sadrnia ◽  
Hassan Aghel ◽  
Mohammad Bannayan

A simulation model was developed for secondary tillage and sowing operations in autumn, using discrete event simulation technique in Arena<sup>®</sup> simulation software (Version 14). Eight machinery sets were evaluated on a 50-hectare farm. Total costs including fixed-costs, variable costs and timeliness costs were calculated for each machinery set. Timeliness costs were estimated for 21-years period on daily basis (Daily Work method) and compared with another method (Average Work method) based on the equation proposed by ASAE Standards, EP 496.3FEB2006. The Inputs of the model were machinery sets, field size, machines performances and daily soil workability state. The optimization criteria were the lowest costs and lowest standard deviation in daily work method plus the lowest costs based on average work method. The validity of the model was evaluated by comparing the output of the model with field observed data collected from various farms. Results revealed that there was no significant difference (P &gt; 0.01) between the observed and predicted finish day. 


2012 ◽  
Vol 433-440 ◽  
pp. 2480-2485
Author(s):  
Shi Fan Zhu ◽  
Jiang Jiang

The operating accuracy of the tractor driver directly affects the transportation efficiency and the airport security. The research of the human reliability is an important way to measure task performance and reduce errors. The main content of the study is to analyze the reliability of the driver of the towbarless tractor in Harbin International Airport. The task network is established using the method of HTN according to the towing actions. The reliabilities of each operation are calculated with the methods such as HCR and the characteristics of human behaviour (SOR). The simulation model is run for a hundred thousand times on the platform of the discrete event simulation software QUEST, and conclusions are brought out, one of them is the reliability of the driver is 99.666%. The main causes of the human error are the qualification and driving experience of the drivers and the circumstance of the airport.


Sign in / Sign up

Export Citation Format

Share Document