scholarly journals Optimization Control on the Mixed Free-Surface-Pressurized Flow in a Hydropower Station

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 320
Author(s):  
Xinlong Wang ◽  
Honggang Fan ◽  
Bing Liu

The mixed free-surface-pressurized flow in the tailrace tunnel of a hydropower station has a great impact on the pressure, velocity, and operation stability of the power station. In the present work, a characteristic implicit method based on the upwind differencing and implicit finite difference scheme is used to solve the mixed free-surface-pressurized flow. The results of the characteristic implicit method agree well with the experimental results, which validates the accuracy of the method. Four factors that influence the amplitude of pressure fluctuation are analyzed and optimized, and the results show that the relative roughness can influence the maximum pressure in the tailrace tunnel. Additionally, the maximum pressure decreases with the increase of the tunnel’s relative roughness. When the surface relative roughness increases from 0.010 to 0.018, the maximum pressure can decrease by 4.33%. The maximum pressure in the tailrace tunnel can be effectively restrained by setting vent holes in the flat-topped tunnel section (tunnel (4)) and a vent hole at 81.25%L (L is the length of tunnel (4)), which can reduce the maximum pressure by 56.72%. Increasing the vent hole number can also reduce the maximum pressure of the mixed free-surface-pressurized flow in the tailrace tunnel. An optimal set of two ventilation holes 10 m in diameter at 93.75%L and 56.25%L is proposed, which can reduce the maximum pressure by 15.30% in comparison with the single vent case.

Author(s):  
Jianxu Zhou ◽  
Fulin Cai ◽  
Ming Hu

For some special tailrace tunnels in the hydropower stations, including the changing top-altitude tailrace tunnel and the tailrace tunnel with downstream reused flat-ceiling diversion tunnel, during normal operation and hydraulic transients, the flow patterns inside are relatively complex mainly including the free-surface pressurized flow and partial free flow if the tail water level is lower than the top elevation of tunnel’s outlet. These complex flow patterns have obvious effect on system’s stability, and can not be simulated accurately by the traditional models. Therefore, a characteristic implicit model is introduced to simulate these complex flow patterns for further stability analysis. In some special cases, the characteristic implicit model also fails to completely simulate the mixed free-surface pressurized flow in the flat-ceiling tailrace tunnel. A new method is presented based on both experimental research and numerical simulation, and then, system’s stability is analyzed by compared with traditional ordinary boundary condition. The results indicate that, with different simulation models for the complex water flow in the tailrace tunnel, system’s dynamic characteristic can be actually revealed with the consideration of the effect of complex flow patterns in the tailrace tunnel on system’s stability and regulation performance.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3220 ◽  
Author(s):  
Guo

The sloping ceiling tailrace tunnel is a novel tailrace tunnel system for hydropower plants. The design, operation, and maintenance of hydropower plants with sloping ceiling tailrace tunnels are based on the calculation and analysis of hydraulic transients and dynamic behavior. Research achievements have provided guidance and a basis for the safe, stable, and efficient operation of hydropower plants with sloping ceiling tailrace tunnels. Based on research achievements, sloping ceiling tailrace tunnels have been applied to more and more hydropower plants. This review paper gives a systematic literature investigation on the hydraulic transient and dynamic behaviors of hydropower plants with sloping ceiling tailrace tunnels. First, the appearance and development of sloping ceiling tailrace tunnels are stated. Key issues in the hydraulic transient and dynamic behaviors of hydropower plants with sloping ceiling tailrace tunnels are illuminated. Then, research achievements on six issues (i.e., the working principles of sloping ceiling tailrace tunnels, the shape design of sloping ceiling tailrace tunnels, the free surface pressurized flow characteristics in sloping ceiling tailrace tunnels, numerical simulations of transient processes for hydro-turbine governing systems with sloping ceiling tailrace tunnels, the stability of hydro-turbine governing systems with sloping ceiling tailrace tunnels, and the transient process control of hydro-turbine governing systems with sloping ceiling tailrace tunnels) are elaborated. Finally, future research trends are presented. In future research, fluid–solid coupling of the tunnel wall and free surface pressurized flow in sloping ceiling tailrace tunnels is worth studying. For hydropower plants with sloping ceiling tailrace tunnels, a combined operating scheme with thermal power and wind power should be explored.


2014 ◽  
Vol 716-717 ◽  
pp. 244-247
Author(s):  
Hong Qing Zhang ◽  
Wei Kai Tan ◽  
Yi Long Lou ◽  
Qian Zhao

In this paper, we used VOF combining turbulent model to simulate pressure distribution of pressure section and non-pressure section in a hydropower station spillway tunnel with high head and large discharge in China. The results show that in the pressure section of the spillway tunnel, the values of pressure of emergency gate slot, working gate and the pressing slope, getting from physical model experiment and numerical simulation, are all positive. While in the non-pressure section, the No.1、2、3 aerators of the sudden enlargement and sudden drop occur the maximum pressure. And at the back of the No.1、2、3 aerators, where the values of pressure are negative, forms cavity. The conclusions obtained can improve the design of spillway tunnel.


Sign in / Sign up

Export Citation Format

Share Document