scholarly journals Production, Characterization and Commercial Formulation of a Biosurfactant from Candida tropicalis UCP0996 and Its Application in Decontamination of Petroleum Pollutants

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 885
Author(s):  
Darne Germano Almeida ◽  
Rita de Cássia Freire Soares da Silva ◽  
Hugo Morais Meira ◽  
Pedro Pinto Ferreira Brasileiro ◽  
Elias José Silva ◽  
...  

Contamination by oil and its derivatives causes serious damage to the environment, motivating the development of innovative technologies for the removal of these contaminants, such as the use of biosurfactants. In the present study, the biosurfactant from Candida tropicalis UCP0996 produced in the low cost-medium formulated with molasses, residual frying oil, and corn steep liquor, was characterized and its toxicity, formulation, and application in removal and biodegradation of oil were investigated. The surface tension of the medium was reduced to 30.4 mN/m, yielding 4.11 g/L of isolated biosurfactant after 120 h. Tests under extreme environmental conditions indicated the stability of the biosurfactant. Chemical characterization by thin layer chromatography (TLC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR), and gas chromatography and mass spectroscopy (CG-MS) revealed the glycolipidic nature of the biosurfactant. The isolated biosurfactant showed no toxicity against the microcrustacean Artemia salina, while the properties of the formulated biosurfactant remained stable during 120 days of storage. The biosurfactant removed 66.18% of motor oil adsorbed in marine stones and dispersed 70.95% of oil in seawater. The biosurfactant was also able to increase by 70% the degradation of motor oil by seawater indigenous microorganisms, showing great potential to be applied as a commercial additive in the bioremediation of oil spills.

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Genan Wang ◽  
Bingyi Shi ◽  
Pan Zhang ◽  
Tingbin Zhao ◽  
Haisong Yin ◽  
...  

Abstractβ-poly(l-malic acid) (PMLA) is a water-soluble biopolymer used in medicine, food, and other industries. However, the low level of PMLA biosynthesis in microorganisms limits its further application in the biotechnological industry. In this study, corn steep liquor (CSL), which processes high nutritional value and low-cost characteristics, was selected as a growth factor to increase the PMLA production in strain, Aureobasidium melanogenum, and its metabolomics change under the CSL addition was investigated. The results indicated that, with 3 g/L CSL, PMLA production, cell growth, and yield (Yp/x) were increased by 32.76%, 41.82%, and 47.43%, respectively. The intracellular metabolites of A. melanogenum, such as amino acids, organic acids, and key intermediates in the TCA cycle, increased after the addition of CSL, and the enrichment analysis showed that tyrosine may play a major role in the PMLA biosynthesis. The results presented in this study demonstrated that the addition of CSL would be an efficient approach to improve PMLA production.


2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 365 ◽  
Author(s):  
Nathália S. A. A. Marques ◽  
Israel G. Sales da Silva ◽  
Davi L. Cavalcanti ◽  
Patrícia C. S. V. Maia ◽  
Vanessa P. Santos ◽  
...  

The successful production of a biosurfactant is dependent on the development of processes using low cost raw materials. In the present work, an economically attractive medium composed of corn steep liquor and waste cooking oil was formulated to maximize the production of bioemulsifier by Mucor circinelloides UCP0001. A central rotational composite design was applied to statistical validation of the production. The emulsifying properties, stability under extreme conditions, its toxicity character, and the characterization of the bioemulsifier were determined. The best condition for biomolecule synthesis occurred in the assay 2 containing 4% of corn steep liquor and 3% waste soybean oil and exhibited 100% emulsification index for canola oil and petroleum, as well as excellent emulsifying activity for canola oil and burned engine oil. The nutritional factors studied showed statistical relevance, since all linear, quadratic effects and their interactions were significant. The bioemulsifier showed 2.69 g/L yield and the chemical character of the molecule structure was identified by FT-IR (Fourier Transform Infrared) spectroscopy. The bioemulsifier showed no toxicity to Artemia salina and Chlorella vulgaris. Stable emulsions were obtained under extreme conditions of temperature, pH, and salinity. These findings contribute to understanding of the relationship between production, physical properties, chemical composition, and stability of bioemulsifier for their potential applications in biotechnology, such as bioremediation of hydrocarbon-contaminated soil and water.


2018 ◽  
Vol 2 (4) ◽  
pp. 63 ◽  
Author(s):  
Patrícia de Souza ◽  
Nadielly Andrade Silva ◽  
Daniele Souza ◽  
Thayse Lima e Silva ◽  
Marta Freitas-Silva ◽  
...  

This study aimed to evaluate the production of a surfactant by Cunninghamella echinulata, using agro-industrial residues, corn steep liquor (CSL), and soybean oil waste (SOW). The study had a factorial design, using as a variable response to the reduction of surface tension. C. echinulata was able to produce biosurfactant in assay, CSL (8.82%) and SOW (2%). The results showed that the biosurfactant was successfully produced by C. echinulata and had attractive properties, such as a low surface tension (31.7 mN/m), a yield of 5.18 g/L at 120 h of cultivation, and an anionic profile. It also achieved a reduction in surface tension stability in a wide range of pH values, temperatures, and salinity values. The biosurfactant produced by C. echinulata showed an absence of toxicity to Artemia salina. The influence of the biosurfactant on the viscosity of engine oil, burnt engine oil, diesel, soybean oil post-frying, canola oil, and water was investigated. The results reveal a mechanism for the decrease of the viscosity using hydrophobic substrates and the new biosurfactant solution at 1.5% of the (CMC). This enables the formulation of a low-cost culture medium alternative, based on corn steep liquor and the reuse of soybean oil after frying to produce a biosurfactant. Additionally, performance of the biosurfactant isolated from C. echinulata showed an excellent ability to remove spilled oil, such as diesel (98.7%) and kerosene (92.3%) from marine sand.


2021 ◽  
Vol 5 (5) ◽  
pp. 2016-2028
Author(s):  
Jaciel Gonçalves dos Santos ◽  
Adriany da Silva ◽  
Jair Marques Junior ◽  
Claudemir Batalini

Employing a methodology that meets various requirements of "Green Chemistry", the substances quinazolinyl benzoate (P1) and N-4-imidazolphenylbenzamide (P2) were synthesized through benzoylation reactions by the classical Schotten-Baumann method, in an aqueous environment and room temperature. The products were purified by recrystallization and characterized by melting point, thin layer chromatography (TLC) and infrared spectroscopy. Qualitative antioxidant activities with the diphenylpicrylhydrazyl radical (DPPH) and toxic potential against Artemia salina Leach larvae were also investigated. Only P2 indicated significant antioxidant activity. According to the medium lethal concentration values (LC50), used for P1 and P2, the toxic potential revealed, respectively, to be moderate for P1 and weak for P2. Despite the low yield obtained for the synthesis of P1, the characterizations indicate success in the preparations, within a synthetic strategy of low cost, efficient and ecologically sustainable.


2020 ◽  
Vol 10 (3) ◽  
pp. 5348-5354

This work aim the carotenoid bioproduction by the yeast Phaffia rhodozyma Y-17268 in a fed-batch bioreactor with different low-cost agroindustrial substrates (crude glycerol, corn steep liquor, and rice parboiling water). The maximum concentration of total carotenoid and cell productivity were 4118 µg/L (835 µg/g) and 0.05 g/L. h, respectively, with a feed volume of 75 mL every 12 h. The medium were composed of 100 g/L crude glycerol, 100 g/L corn steep liquor, and 20 g/L rice parboiling water at 25ºC, pHinitial 4.0, agitation rate of 250 rpm, aeration rate of 1.5 vvm and 96 h of bioproduction. 0.188 h-1 of maximum specific growth speeds (μmax) was obtained for the major carotenoid - (all-E)-β-carotene (75.9%). Thus, the yeast P. rhodozyma produced in a fed-batch bioreactor demonstrated a great potential to produce the β-carotene.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9064 ◽  
Author(s):  
Ivison A. Silva ◽  
Bruno O. Veras ◽  
Beatriz G. Ribeiro ◽  
Jaciana S. Aguiar ◽  
Jenyffer M. Campos Guerra ◽  
...  

This work describes the application of the biosurfactant from Candida bombicola URM 3718 as a meal additive like cupcake. The biosurfactant was produced in a culture medium containing 5% sugar cane molasses, 5% residual soybean oil and 3% corn steep liquor. The surface and interfacial tension of the biosurfactant were 30.790 ± 0.04 mN/m and 0.730 ± 0.05 mN/m, respectively. The yield in isolated biosurfactant was 25 ± 1.02 g/L and the CMC was 0.5 g/L. The emulsions of the isolated biosurfactant with vegetable oils showed satisfactory results. The microphotographs of the emulsions showed that increasing the concentration of biosurfactant decreased the oil droplets, increasing the stability of the emulsions. The biosurfactant was incorporated into the cupcake dessert formulation, replacing 50%, 75% and 100% of the vegetable fat in the standard formulation. Thermal analysis showed that the biosurfactant is stable for cooking cupcakes (180 °C). The biosurfactant proved to be promising for application in foods low in antioxidants and did not show cytotoxic potential in the tested cell lines. Cupcakes with biosurfactant incorporated in their dough did not show significant differences in physical and physical–chemical properties after baking when compared to the standard formulation. In this way, the biosurfactant has potential for application in the food industry as an emulsifier for flour dessert.


Sign in / Sign up

Export Citation Format

Share Document