urease production
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 25 (2) ◽  
pp. 112-116
Author(s):  
Bo Gyung Mun ◽  
Joo Hoon Lee ◽  
Young Seo Park ◽  
Jiwon Jung

Hyperammonemia is mainly caused by diseases related to liver failure. However, there are also non-hepatic causes of hyperammonemia, such as urinary tract infection (UTI) due to urease-producing organisms. Urease production by these bacteria induces a hydrolysis of urinary urea into ammonia that can cross the urothelial cell membrane and diffuse into blood vessels, leading to hyperammonemia. Delayed diagnosis and treatment of hyperammonemia can lead to lethal encephalopathy that can cause brain damage and life-threatening conditions. In the presence of obstructive uropathy, UTI by urease-producing bacteria can lead to more severe hyperammonemia due to enhanced resorption of ammonia into the systemic circulation. In this report, we present a case of acute severe hyperammonemic encephalopathy leading to brain death due to accumulation of ammonia in blood caused by Morganella morganii UTI in a 10-year-old girl with cloacal anomaly, causing obstructive uropathy even after multiple corrections.


Author(s):  
Poonam Naik ◽  
Suchita Pandey ◽  
Satyashree Gagan ◽  
Sudeshna Biswas ◽  
Joveeta Joseph

Abstract Background Global concerns have been raised due to upward trend of Multi-drug Resistant (MDR) Pseudomonas aeruginosa reports in ocular infections. Our aim was to characterize the virulence determinants of MDR P. aeruginosa causing ocular infections. Methods P. aeruginosa strains were isolated from 46 patients with conjunctivitis (2), endophthalmitis (11) and active keratitis (25) seen at our Institute, between 2016 and 2020. The isolates were identified by Vitek-2 and characterized based on growth kinetics, biofilm formation, motility, pyoverdine and pyocyanin production, phospholipase and catalase activity, urease production along with expression of exotoxins (exo-A, exo-U and exo-S) and correlated to its antibiotic profiles. Results Of the 46 P. aeruginosa isolates, 23 were MDR and were significantly (p = 0.03) associated with older (> 65) patients, along with higher production of pyoverdine (58.3%), pyocyanin (30.4%), phospholipase (91.6%) and protease (62.5%) activity, formed strong biofilms and exo-A (30.4%). No significant relation between motility, urease and catalase production with antibiotic susceptibility was observed. Heatmap and PCoA analysis confirmed this unique virulence profile associated with MDR-PA strains. Conclusion Phenotypic characteristics of P.aeruginosa might be responsible for increased colonization and antibiotic resistance observed in vivo and understanding these differences may lead to development of clinical guidelines for the management of MDR infections.


2021 ◽  
pp. 2131-2142
Author(s):  
Fadwa Abdul Razaq Jameel ◽  
Shaimaa Nabhan Yassein

    The present study aimed to the isolation and identification of Penicillium chrysogenum from subclinical bovine mastitis as well as the evaluation of their potential to produce the main virulence factors by assessing proteinase production, urease production, growth rate at 37 ̊C, and hemolytic activity on Blood agar. One hundred milk samples were assembled from the White Gold village and surrounded outlying farms of Abu-Ghraib, Baghdad province, during the period from November 2018 to March 2019. Each milk sample was tested for California Mastitis (CMT). The results indicated that 85% of the samples gave positive (+ve) results for CMT. Sixty six mycotic isolates were detected, including 31 isolates of Penicillium spp. (46.9%) and 23 isolates of P. chrysogenum (34.8%). All of P. chrysogenum isolates were identified by culturing on Sabouraud Dextrose Agar and Czapek Doxes Agar at 25 ºC for 5-7 days. P. chrysogenum was diagnosed by polymerase chain reaction (PCR) based on the internal transcribed spacer (ITS) region of fungal ribosomal DNA (rDNA). The results of genetic identities showed that this fungus had 94% matching with the reference strain. Also, this study indicated that P. chrysogenum has several virulence factors with the ability of this fungus to degrade both proteins (albumin and casein), hydrolyse urea, and grow ate 37 ̊C, but not to confer hemolytic activity on Blood Agar.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Eshetu Mekonnen ◽  
Ameha Kebede ◽  
Asefa Nigussie ◽  
Gessese Kebede ◽  
Mesfin Tafesse

Urease is an enzyme produced by ureolytic microorganisms which hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has wide applications in biotechnology, agriculture, medicine, construction, and geotechnical engineering. Urease-producing microbes can be isolated from different ecosystems such as soil, oceans, and various geological formations. The aim of this study was to isolate and characterize rapid urease-producing bacteria from Ethiopian soils. Using qualitative urease activity assay, twenty urease-producing bacterial isolates were screened and selected. Among these, three expressed urease at high rates as determined by a conductivity assay. The isolates were further characterized with respect to their biochemical, morphological, molecular, and exoenzyme profile characteristics. The active urease-producing bacterial isolates were found to be nonhalophilic to slightly halophilic neutrophiles and aerobic mesophiles with a range of tolerance towards pH (4.0–10.0), NaCl (0.25—5%), and temperature (20–40°C). According to the API ZYM assays, all three isolates were positive for alkaline phosphatase, leucine aryl amidase, acid phosphatase, and naphthol_AS_BI_phosphohydrolase. The closest described relatives of the selected three isolates (Isolate_3, Isolate_7, and Isolate_11) were Bacillus paramycoides, Citrobacter sedlakii, and Enterobacter bugandensis with 16S rRNA gene sequence identity of 99.0, 99.2, and 98.9%, respectively. From the study, it was concluded that the three strains appear to have a relatively higher potential for urease production and be able to grow under a wider range of growth conditions.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 518
Author(s):  
Sofia Santos Costa ◽  
Valéria Oliveira ◽  
Maria Serrano ◽  
Constança Pomba ◽  
Isabel Couto

Staphylococcus coagulans is among the three most frequent pathogens of canine pyoderma. Yet, studies on this species are scarce. Twenty-seven S. coagulans and one S. schleiferi, corresponding to all pyoderma-related isolations from these two species at two veterinary laboratories in Lisbon, Portugal, between 1999 and 2018 (Lab 1) or 2018 (Lab 2), were analyzed. Isolates were identified by the analysis of the nuc gene and urease production. Antibiotic susceptibility towards 27 antibiotics was evaluated by disk diffusion. Fourteen antibiotic resistance genes were screened by PCR. Isolates were typed by SmaI-PFGE. Two S. coagulans isolates (2/27, 7.4%) were methicillin-resistant (MRSC, mecA+) and four (4/27, 14.8%) displayed a multidrug-resistant (MDR) phenotype. We observed resistance to penicillin (17/27, 63.0%), fluoroquinolones (11/27, 40.7%), erythromycin and clindamycin (3/27, 11.1%), fusidic acid (3/27, 11.1%) and tetracycline (1/27, 3.7%). The blaZ and erm(B) genes were carried by 16 and 1 isolates resistant to penicillin and erythromycin/clindamycin, respectively. Only three S. coagulans carried plasmids. The single S. schleiferi isolate presented an MDR phenotype. SmaI-PFGE revealed a limited genetic diversity of S. coagulans, with a predominant lineage present from 2001 to 2018. This study describes the first MRSC causing canine infection in Portugal and reveals a high burden of antimicrobial resistance, with the emergence of MDR phenotypes within the main lineages.


2020 ◽  
Vol 70 (12) ◽  
pp. 6067-6078
Author(s):  
Maria Pain ◽  
Runa Wolden ◽  
Daniel Jaén-Luchoro ◽  
Francisco Salvà-Serra ◽  
Beatriz Piñeiro Iglesias ◽  
...  

When analysing a large cohort of Staphylococcus haemolyticus , using whole-genome sequencing, five human isolates (four from the skin and one from a blood culture) with aberrant phenotypic and genotypic traits were identified. They were phenotypically similar with yellow colonies, nearly identical 16S rRNA gene sequences and initially speciated as S. haemolyticus based on 16S rRNA gene sequence and MALDI-TOF MS. However, compared to S. haemolyticus , these five strains demonstrate: (i) considerable phylogenetic distance with an average nucleotide identity <95 % and inferred DNA–DNA hybridization <70  %; (ii) a pigmented phenotype; (iii) urease production; and (iv) different fatty acid composition. Based on the phenotypic and genotypic results, we conclude that these strains represent a novel species, for which the name Staphylococcus borealis sp. nov. is proposed. The novel species belong to the genus Staphylococcus and is coagulase- and oxidase-negative and catalase-positive. The type strain, 51-48T, is deposited in the Culture Collection University of Gothenburg (CCUG 73747T) and in the Spanish Type Culture Collection (CECT 30011T).


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 542
Author(s):  
Shun-Hsien Chang ◽  
Pei-Ling Hsieh ◽  
Guo-Jane Tsai

This study investigated the effects of shrimp chitosan with 95% degree of deacetylation (DD95) in combination with clinical antibiotics on the growth and urease production of Helicobacter pylori. The inhibitory effect of DD95 on the adherence of H. pylori to the human intestinal carcinoma cells (TSGH9201) was also investigated. Five strains of H. pylori, including three standard strains and two strains of clinical isolates were used as the test strains. The inhibitory effects of DD95 on growth and urease production of various strains of H. pylori increased with increasing DD95 concentration and decreasing pH values from pH 6.0 to pH 2.0. Urease activity of H. pylori at pH 2.0 in the presence of 4000 μg/mL of DD95 decreased by 37.86% to 46.53%. In the presence of 50 μg/mL antibiotics of amoxicillin, tetracycline, or metronidazole at pH 6.0 and pH 2.0, H. pylori counts were decreased by 1.51–3.19, and 1.47–2.82 Log CFU/mL, respectively. Following the addition of 4000 μg/mL DD95 into the 50 μg/mL antibiotic-containing culture medium with pH 6.0 and pH 2.0, overall H. pylori counts were strongly decreased by 3.67–7.61 and 6.61–6.70 Log CFU/mL, respectively. Further, DD95 could inhibit the adherence of H. pylori on TSGH 9201 cells, as evidenced by fluorescent microscopy and thus may potentially protect against H. pylori infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yingying Hu ◽  
Weitao Liu ◽  
Wenjing Wang ◽  
Xinlei Jia ◽  
Lanjuan Xu ◽  
...  

Microbial Induced Calcite Precipitation (MICP) is a biochemical process widely found in nature, also known as microbial mineralization. This paper investigates whether this process can help promote the intelligent reinforcement and repair of underground projects such as mines and tunnels. We selected Bacillus sphaericus and Bacillus mucilaginosus as the research objects. The former has an outstanding urease production ability, and the latter can secrete carbonic anhydrase in vitro. Bacillus mucilaginosus was introduced into the culture solution of Bacillus sphaericus in the most suitable culture environment, and the changes of mineralization rate and mineralization yield of Bacillus sphaericus were observed and analyzed. The results revealed that, to maintain the highest growth rate of Bacillus sphaericus, the optimal pH value was between 7 and 8, the optimal urea concentration was 0.5 mol/L, the optimal Ca2+ concentration was 0.6 mol/L, and the optimal Luria-Bertani (LB) culture concentration was 20 g/L. The amount of biomineralized calcium carbonate precipitated in the double bacteria solution can reach 1.89 times the amount of the precipitation in the Bacillus sphaericus solution under the same conditions. It concludes that the introduction of Bacillus mucilaginosus can effectively increase the mineralization yield of Bacillus sphaericus without affecting the mineralized products.


Sign in / Sign up

Export Citation Format

Share Document