scholarly journals Two Decades of Experience with the Granular Sludge-Based ANAMMOX® Process Treating Municipal and Industrial Effluents

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1207
Author(s):  
Willie Driessen ◽  
Tim Hendrickx

This paper is a review of 20 years of full-scale experience with the granular sludge-based ANAMMOX process. The ANAMMOX process is a biological deammonification process for energy-efficient removal of ammoniacal nitrogen, which has been successfully applied on dewatering reject liquors from biosolids sludge digesters (e.g., mesophilic anaerobic digestions, codigestion, thermal sludge hydrolysis process (THP)) and nutrient-rich anaerobically treated industrial effluents (e.g., fermentation industry, food industry). The ANAMMOX process is a continuously operated biological process using granular biomass. The highly active concentrated granular biomass allows for compact reactor systems and a fast start-up. Long term operations of various case studies show stable process performance of full-scale reactors treating municipal and industrial effluents, achieving ammoniacal nitrogen (NH4-N) removal in excess of 90% at low and high loading rates up to 2.5 kgNH4-N/(m3·d). Some special aspects (e.g., micro-nutrients, inhibition, alkalinity consumption) of treating various wastewaters are discussed in detail. The ANAMMOX process is demonstrated to be resilient in handling process upsets and off-spec wastewater composition.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 27-33 ◽  
Author(s):  
W.R. Abma ◽  
C.E. Schultz ◽  
J.W. Mulder ◽  
W.R.L. van der Star ◽  
M. Strous ◽  
...  

The start-up of the first full scale Anammox reactor is complete. The reactor shows stable operation, even at loading rates of 10 kg N/m3.d. This performance is the result of the formation of Anammox granules, which have a high density and settling velocities exceeding 100 m/h. With this performance, the Anammox granular sludge technology has been proven on full scale.



2012 ◽  
Vol 518-523 ◽  
pp. 2391-2398
Author(s):  
Yan He ◽  
Gong Ming Zhou ◽  
Min Sheng Huang ◽  
Min Tong

Three kinds of seeding sludge, i.e. conventional activated sludge, anaerobic granular sludge and the nitrifying activated sludge from the nitritation reactor treating aged leachates were evaluated in batch mode to screen the optimized inoculum for the rapid start-up of ANAMMOX reactor. The feasibility of the ANAMMOX process for the treatment of aged leachates was also investigated in a modified upflow anaerobic sludge blanket (UASB, 0.05m3). The batch experiments revealed that the nitrifying activated sludge from the nitritation reactor could respectively achieve the NRR (nitrogen removal rate) of 0.0365 kg N/(m3.d) and the ARR (ammonium removal rate) of 0.013 kg N/(m3.d) on day 12, which were greatly higher than those of the other two tested sludge samples. The mixture of the aforementioned nitrifying activated sludge and anaerobic granular sludge was established as an effective inoculum for the prompt start-up of ANAMMOX reactor. The maximum total nitrogen removal rate of 0.826 kg N/(m3.d) could be obtained for the treatment of “old” leachates under NLR (nitrogen loading rate) of 1.028 kg N/(m3.d). It is concluded that the N-removal performance of ANAMMOX process is still to be improved for actual engineering application to aged landfill leachates.



2013 ◽  
Vol 8 (1) ◽  
pp. 47-54 ◽  
Author(s):  
A. Giesen ◽  
L. M. M. de Bruin ◽  
R. P. Niermans ◽  
H. F. van der Roest

Aerobic granular sludge technology can be regarded as the future standard for industrial and municipal wastewater treatment. As a consequence, a growing number of institutes and universities focus their scientific research on this new technology. Recently, after extensive Dutch research and development effort, an aerobic granular biomass technology has become available to the market. Full scale installations for both industrial and municipal applications are already on stream, under construction or in design. The technology is distinguished by the name ‘Nereda®’ and based on the specific characteristics of aerobic granular sludge. It can be considered as the first mature aerobic granular sludge technology applied at full scale. It improves on traditional activated sludge systems by a significantly lower use of energy and chemicals, its compactness and its favorable capital and operational costs.



2008 ◽  
Vol 58 (6) ◽  
pp. 1335-1341 ◽  
Author(s):  
Sen Qiao ◽  
Yuki Kawakubo ◽  
Yingjun Cheng ◽  
Takashi Nishiyama ◽  
Takao Fujii ◽  
...  

The anammox process, as an alternative to conventional nitrogen removal technologies, has abstracted much attention in recent years. In this study, one column-type reactor using a novel support material—net type acrylic fiber (Biofix)—was used for anammox treatment. The Biofix reactor was operated at 25°C (peak summer temperature, 31.5°C). Over 330 days of operation for synthetic wastewater treatment, the nitrogen loading rates of the reactor were increased to 3.6 kg-N/m3/d and T-N removal efficiencies reached to 81.3%. For the practical anaerobic sludge digester liquor treatment, the average TN removal efficiency of 72% was obtained. A protein substance was shown to be the most abundant extracellular polymeric substances (EPS) in the granular sludge with almost two times more in the attached sludge of the Biofix reactor. Considering the EPS levels and observation by scanning electron microscopy, the anammox granules in the Biofix reactor were showing dense state. Results of DNA analyses indicated that the KSU-1 strain might prefer relatively low nutrient levels, while the KU2 strain might be better suited for the high media concentration. Other kinds of bacteria were also identified with the potentials for consuming the dissolved oxygen in the influent and facilitating anammox bacteria surviving under aerobic conditions.



2001 ◽  
Vol 43 (11) ◽  
pp. 127-134 ◽  
Author(s):  
J. W. Mulder ◽  
M. C. M. van Loosdrecht ◽  
C. Hellinga ◽  
R. van Kempen

At the Rotterdam Dokhaven WWTP the first full-scale application of the SHARON process has been constructed. In the SHARON process, rejection water from dewatering of digested sludge is treated for N-removal. It concerns a highly active process operating without sludge retention. The single tank reactor is intermittently aerated. Due to differences in growth rate nitrite oxidisers are washed out of the system while ammonia oxidisers can be maintained, resulting in N-removal over nitrite. The SHARON process has been selected after comparison with several other techniques. The feed of the SHARON tank is concentrated, with ammonia concentrations over 1 g N/l. The first results show that conversion rates of 90% are quite possible with N-removal mainly via the nitrite route. The process was shown to be stable. Due to the high inlet concentrations pH control is of great importance, preventing process inhibitions. The acidifying effect of nitrification can be compensated completely by CO2 stripping during aeration and by denitrification. Heat production by biological conversions appeared to be significant, due to the high inlet concentrations, and contributes to the optimal operating temperature of 30-40°C.



2017 ◽  
Vol 12 (4) ◽  
pp. 987-996 ◽  
Author(s):  
Mario Pronk ◽  
Andreas Giesen ◽  
Andrew Thompson ◽  
Struan Robertson ◽  
Mark van Loosdrecht

Abstract Aerobic granular sludge is seen as the future standard for industrial and municipal wastewater treatment. Through a Dutch research and development program, a full-scale aerobic granular biomass technology has been developed – the Nereda® technology – which has been implemented to treat municipal and industrial wastewater. The Nereda® system is considered to be the first aerobic granular sludge technology applied at full-scale and more than 40 municipal and industrial plants are now in operation or under construction worldwide. Further plants are in the planning and design phase, including plants with capacities exceeding 1 million PE. Data from operational plants confirm the system's advantages with regard to treatment performance, energy-efficiency and cost-effectiveness. In addition, a new possibility for extracting alginate-like exopolysaccharides (ALE) from aerobic granular sludge has emerged which could provide sustainable reuse opportunities. The case is therefore made for a shift away from the ‘activated sludge approach’ towards an ‘aerobic granular approach’, which would assist in addressing the challenges facing the wastewater treatment industry in Asia and beyond.



2007 ◽  
pp. 489-499
Author(s):  
He Yan ◽  
Zhou Gongming ◽  
Zhao Youcai ◽  
Feng Guoguang

Three kinds of seeding sludge, i,e, conventional activated sludge, anaerobic granularsludge and the nitrifying activated sludge from the nitritation reactor treating agedleachates were evaluated in batch mode to screen the optimized inoculum for the rapidstart-up of ANAMMOX reactor. The feasibility of the ANAMMOX process for thetreatment of aged leachates was also investigated in a modified upflow anaerobic sludgeblanket (UASB, 0,05 m\ The batch experiments revealed that the nitrifying activatedsludge from the nitritation reactor could respectively achieve the NRR (nitrogenremoval rate) of 0,0365 kg N/(m3,d) and the ARR (ammonium removal rate) of 0,013kg N/(m3.d) on day 12, which were greatly higher than those of the other two testedsludge samples, The mixture of the aforementioned nitrifying activated sludge andanaerobic granular sludge was established as an effective inoculum for the prompt startup of ANAMMOX reactor. The maximum total nitrogen removal rate of 0,826 kgN/(m3,d) could be obtained for the treatment of "old" leachates under NLR (nitrogenloading rate) of 1.028 kg N/(m3.d), It is concluded that the N-removal performance ofANAMMOX process is still to be improved for actual engineering application to agedlandfill leachates,



2021 ◽  
Vol 9 (7) ◽  
pp. 1457
Author(s):  
Julia Hassa ◽  
Johanna Klang ◽  
Dirk Benndorf ◽  
Marcel Pohl ◽  
Benedikt Hülsemann ◽  
...  

There are almost 9500 biogas plants in Germany, which are predominantly operated with energy crops and residues from livestock husbandry over the last two decades. In the future, biogas plants must be enabled to use a much broader range of input materials in a flexible and demand-oriented manner. Hence, the microbial communities will be exposed to frequently varying process conditions, while an overall stable process must be ensured. To accompany this transition, there is the need to better understand how biogas microbiomes respond to management measures and how these responses affect the process efficiency. Therefore, 67 microbiomes originating from 49 agricultural, full-scale biogas plants were taxonomically investigated by 16S rRNA gene amplicon sequencing. These microbiomes were separated into three distinct clusters and one group of outliers, which are characterized by a specific distribution of 253 indicative taxa and their relative abundances. These indicative taxa seem to be adapted to specific process conditions which result from a different biogas plant operation. Based on these results, it seems to be possible to deduce/assess the general process condition of a biogas digester based solely on the microbiome structure, in particular on the distribution of specific indicative taxa, and without knowing the corresponding operational and chemical process parameters. Perspectively, this could allow the development of detection systems and advanced process models considering the microbial diversity.



Author(s):  
Sara Toja Ortega ◽  
Mario Pronk ◽  
Merle K. de Kreuk

Abstract Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and β-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2–1 mm), flocculent sludge (0.045–0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5–7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55–68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. Key points • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater. Graphical abstract



2020 ◽  
Vol 159 ◽  
pp. 107575
Author(s):  
Leire Caizán-Juanarena ◽  
Annemiek ter Heijne ◽  
Jan Weijma ◽  
Doekle Yntema ◽  
Diego A. Suárez-Zuluaga ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document