scholarly journals Similarity and Froude Number Similitude in Kinematic and Hydrodynamic Features of Solitary Waves over Horizontal Bed

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1420
Author(s):  
Chang Lin ◽  
Ming-Jer Kao ◽  
James Yang ◽  
Rajkumar Venkatesh Raikar ◽  
Juan-Ming Yuan ◽  
...  

This study presents, experimentally, similarity and Froude number similitude (FNS) in the dimensionless features of two solitary waves propagating over a horizontal bed, using two wave gauges and a high-speed particle image velocimetry (HSPIV). The two waves have distinct wave heights H0 (2.9 and 5.8 cm) and still water depths h0 (8.0 and 16.0 cm) but identical H0/h0 (0.363). Together with the geometric features of free surface elevation and wavelength, the kinematic characteristics of horizontal and vertical velocities, as well as wave celerity, are elucidated. Illustration of the hydrodynamic features of local and convective accelerations are also made in this study. Both similarity and FNS hold true for the dimensionless free surface elevation (FSE), wavelength and celerity, horizontal and vertical velocities, and local and convective accelerations in the horizontal and vertical directions. The similarities and FNSs indicate that gravity dominates and governs the wave kinematics and hydrodynamics.

2020 ◽  
Vol 8 (2) ◽  
pp. 88 ◽  
Author(s):  
Diana Vargas ◽  
Ravindra Jayaratne ◽  
Edgar Mendoza ◽  
Rodolfo Silva

This paper describes a new set of experiments focused on estimating time series of the free surface elevation of water (FSEW) from velocities recorded by submerged air bubbles under regular and irregular waves using a low-cost non-intrusive technique. The main purpose is to compute wave heights and periods using time series of velocities recorded at any depth. The velocities were taken from the tracking of a bubble curtain with only one high-speed digital video camera and a bubble generator. These experiments eliminate the need of intrusive instruments while the methodology can also be applied if the free surface is not visible or even if only part of the depth can be recorded. The estimation of the FSEW was successful for regular waves and reasonably accurate for irregular waves. Moreover, the algorithm to reconstruct the FSEW showed better results for larger wave amplitudes.


Author(s):  
Csaba Pa´kozdi ◽  
Mateusz Graczyk

Sloshing is a violent fluid motion and is of current interest for many branches of the industry, among them gas shipping. Numerical methods are an important tool for analyzing sloshing. Among them, methods based on the smooth particle hydrodynamics (SPH) are particularly promising for analyzing violent fluid impacts. Previous work shows a good agreement in terms of free surface elevation between SPH simulation and experiments. An extensive comparison in terms of pressure in the tank is missing. This is due to the fact that availability of reliable and accurate pressure measurements is limited. Therefore sloshing experiments in a two-dimensional tank are performed. A regular one-degree-of-freedom motion with small amplitude is imposed for various frequencies around fluid natural frequency and three filling levels in range 17–40% of the tank length. By means of pressure sensors mounted on the vertical tank wall the pressure is measured for a non-impact type fluid motion. Free surface elevation is measured by wave probes and a high speed video recording is taken. An in-house SPH code is presented in detail. Standard SPH formulation is modified with the focus on implementation of the Verlet time scheme. The Verlet time integration scheme makes it possible to perform long time sloshing simulations due to its good momentum and energy conservation properties. A diffuse term coefficient is applied in the continuity equation. Investigated sloshing cases are without violent fluid impacts. Using artificial mass diffusion term in SPH simulations is expected not to significantly influence the pressure field. The paper shows that applying this technique with carefully chosen coefficient does not lead to any nonphysical phenomena in the SPH simulation for such a sensitive phenomenon as sloshing. By comparing the SPH simulations to the quasi-analytical multimodal method and experiments the code and diffuse term coefficient are validated.


Author(s):  
Witold Cies´likiewicz ◽  
Ove T. Gudmestad

A parametric model linking the free-surface elevations with the fluid acceleration field under an irregular wave is developed. In order to estimate the parameters of the model, system identification procedures are applied based on data recorded in a wave tank. The free-surface time series are taken as input data and the output data are components of the particle acceleration vector. The particle acceleration time series were obtained by taking the numerical derivative of the measured orbital velocity time series. A simple algorithm of numerical diffrentiation is proposed. This algorithm gives very accurate values of the particle acceleration and is quite straightforward as the derivative is computed directly in time domain. A linear time-invariant model with the static nonlinearities incorporated at the input side is assumed. This paper demonstrates the results of modelling the horizontal component of the particle acceleration in comparison with the time series calculated from wave kinematics data taken in a wave flume during an earlier experiment using Laser Doppler Velocimetry. The modelled particle acceleration time series compare well with those calculated from the observed velocity time series. This proves the effectiveness of the applied approach. The system identification techniques allow for preparing the model which constructs the wave kinematics (both velocities and accelerations) using the measured time series of only the free-surface elevation. This feature of the proposed approach may be very useful in maritime engineering and oceanography.


Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Author(s):  
Valentina Laface ◽  
Giovanni Malara ◽  
Felice Arena ◽  
Ioannis A. Kougioumtzoglou ◽  
Alessandra Romolo

The paper addresses the problem of deriving the nonlinear, up to the second order, crest wave height probability distribution in front of a vertical wall under the assumption of finite spectral bandwidth, finite water depth and long-crested waves. The distribution is derived by relying on the Quasi-Deterministic representation of the free surface elevation in front of the vertical wall. The theoretical results are compared against experimental data obtained by utilizing a compressive sensing algorithm for reconstructing the free surface elevation in front of the wall. The reconstruction is pursued by starting from recorded wave pressure time histories obtained by utilizing a row of pressure transducers located at various levels. The comparison shows that there is an excellent agreement between the proposed distribution and the experimental data and confirm the deviation of the crest height distribution from the Rayleigh one.


Author(s):  
Kévin Martins ◽  
Philippe Bonneton ◽  
David Lannes ◽  
Hervé Michallet

AbstractThe inability of the linear wave dispersion relation to characterize the dispersive properties of non-linear shoaling and breaking waves in the nearshore has long been recognised. Yet, it remains widely used with linear wave theory to convert between sub-surface pressure, wave orbital velocities and the free surface elevation associated with non-linear nearshore waves. Here, we present a non-linear fully dispersive method for reconstructing the free surface elevation from sub-surface hydrodynamic measurements. This reconstruction requires knowledge of the dispersive properties of the wave field through the dominant wavenumbers magnitude κ, representative in an energy-averaged sense of a mixed sea-state composed of both free and forced components. The present approach is effective starting from intermediate water depths - where non-linear interactions between triads intensify - up to the surf zone, where most wave components are forced and travel approximately at the speed of non-dispersive shallow-water waves. In laboratory conditions, where measurements of κ are available, the non-linear fully dispersive method successfully reconstructs sea-surface energy levels at high frequencies in diverse non-linear and dispersive conditions. In the field, we investigate the potential of a reconstruction that uses a Boussinesq approximation of κ, since such measurements are generally lacking. Overall, the proposed approach offers great potential for collecting more accurate measurements under storm conditions, both in terms of sea-surface energy levels at high frequencies and wave-by-wave statistics (e.g. wave extrema). Through its control on the efficiency of non-linear energy transfers between triads, the spectral bandwidth is shown to greatly influence non-linear effects in the transfer functions between sub-surface hydrodynamics and the sea-surface elevation.


1978 ◽  
Vol 1 (3) ◽  
pp. 373-390
Author(s):  
Lokenath Debnath ◽  
Uma Basu

A theory is presented of the generation and propagation of the two and the three dimensional tsunamis in a shallow running ocean due to the action of an arbitrary ocean floor or ocean surface disturbance. Integral solutions for both two and three dimensional problems are obtained by using the generalized Fourier and Laplace transforms. An asymptotic analysis is carried out for the investigation of the principal features of the free surface elevation. It is found that the propagation of the tsunamis depends on the relative magnitude of the given speed of the running ocean and the wave speed of the shallow ocean. When the speed of the running ocean is less than the speed of the shallow ocean wave, both the two and the three dimensional free surface elevation represent the generation and propagation of surface waves which decay asymptotically ast−12for the two dimensional case and ast−1for the three dimensional tsunamis. Several important features of the solution are discussed in some detail. As an application of the general theory, some physically realistic ocean floor disturbances are included in this paper.


2021 ◽  
Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract The correct estimation of wave loading on a cylinder in a cylinder group under different impact scenarios is essential to determine the structural safety of coastal and offshore structures. This scenario differs from the interaction of waves with a single cylinder but not a lot of studies focus on cylinder groups under different arrangements. In this study, the interaction between plunging breaking waves and cylinder groups in deep water is investigated using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program. The Reynolds-averaged Navier-Stokes equation with the two equation k–Ω turbulence model is adopted to resolve the numerical wave tank, with free surface calculated using the level set method. In this study, focused waves in deep water were modeled with a fixed wave steepness method. Wave breaking occurs when the steepness of the wave crest front satisfies the breaking criteria. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data for both free surface elevation and wave forces. Four cases are simulated to investigate the interaction of breaking waves with a cylinder group with different relative distance, number of cylinders and arrangement. Results show that breaking wave forces on the upstream cylinder are smaller than on a single cylinder with a relative distance of one cylinder diameter. The wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a cylinder group mostly happens between the neighbouring cylinders. These interactions are also effected by the relative distance and the numbers of the neighbouring cylinders.


Sign in / Sign up

Export Citation Format

Share Document