scholarly journals Feature Selection and Uncertainty Analysis for Bubbling Fluidized Bed Oxy-Fuel Combustion Data

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1757
Author(s):  
Katerina Marzova ◽  
Ivo Bukovsky

This paper presents a novel feature extraction and validation technique for data-driven prediction of oxy-fuel combustion emissions in a bubbling fluidized bed experimental facility. The experimental data were analyzed and preprocessed to minimize the size of the data set while preserving patterns and variance and to find an optimal configuration of the feature vector. The Boruta Feature Selection Algorithm (BFSA) finds feature vector’s configuration and the Multiscale False Neighbours Analysis (MSFNA) is newly extended and proposed to validate the BFSA’s design for emission prediction to assure minimal uncertainty in mapping between feature vectors and corresponding outputs. The finding is that the standalone BFSA does not reflect various sampling period setups that appeared significantly influencing the false neighborhood in the design of feature vectors for possible emission prediction, and MSFNA resolves that.

Author(s):  
Manpreet Kaur ◽  
Chamkaur Singh

Educational Data Mining (EDM) is an emerging research area help the educational institutions to improve the performance of their students. Feature Selection (FS) algorithms remove irrelevant data from the educational dataset and hence increases the performance of classifiers used in EDM techniques. This paper present an analysis of the performance of feature selection algorithms on student data set. .In this papers the different problems that are defined in problem formulation. All these problems are resolved in future. Furthermore the paper is an attempt of playing a positive role in the improvement of education quality, as well as guides new researchers in making academic intervention.


Fuel ◽  
2015 ◽  
Vol 150 ◽  
pp. 146-153 ◽  
Author(s):  
M. de las Obras-Loscertales ◽  
T. Mendiara ◽  
A. Rufas ◽  
L.F. de Diego ◽  
F. García-Labiano ◽  
...  

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Da Xu ◽  
Jialin Zhang ◽  
Hanxiao Xu ◽  
Yusen Zhang ◽  
Wei Chen ◽  
...  

Abstract Background The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far from being satisfactory due to their limitation in using unsupervised learning methods. To enhance interpretability and overcome this problem, we developed a novel feature selection algorithm. In the meantime, complex genomic data brought great challenges for the identification of biomarkers and therapeutic targets. The current some feature selection methods have the problem of low sensitivity and specificity in this field. Results In this article, we designed a multi-scale clustering-based feature selection algorithm named MCBFS which simultaneously performs feature selection and model learning for genomic data analysis. The experimental results demonstrated that MCBFS is robust and effective by comparing it with seven benchmark and six state-of-the-art supervised methods on eight data sets. The visualization results and the statistical test showed that MCBFS can capture the informative genes and improve the interpretability and visualization of tumor gene expression and single-cell sequencing data. Additionally, we developed a general framework named McbfsNW using gene expression data and protein interaction data to identify robust biomarkers and therapeutic targets for diagnosis and therapy of diseases. The framework incorporates the MCBFS algorithm, network recognition ensemble algorithm and feature selection wrapper. McbfsNW has been applied to the lung adenocarcinoma (LUAD) data sets. The preliminary results demonstrated that higher prediction results can be attained by identified biomarkers on the independent LUAD data set, and we also structured a drug-target network which may be good for LUAD therapy. Conclusions The proposed novel feature selection method is robust and effective for gene selection, classification, and visualization. The framework McbfsNW is practical and helpful for the identification of biomarkers and targets on genomic data. It is believed that the same methods and principles are extensible and applicable to other different kinds of data sets.


2019 ◽  
Vol 47 (3) ◽  
pp. 154-170
Author(s):  
Janani Balakumar ◽  
S. Vijayarani Mohan

Purpose Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content. Design/methodology/approach This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper. Findings The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy. Originality/value This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.


2021 ◽  
Vol 15 ◽  
Author(s):  
Qi Li ◽  
Anyuan Zhang ◽  
Zhenlan Li ◽  
Yan Wu

Electromyography (EMG) pattern recognition is one of the widely used methods to control the rehabilitation robots and prostheses. However, the changes in the distribution of EMG data due to electrodes shifting results in classification decline, which hinders its clinical application in repeated uses. Adaptive learning can solve this problem but takes additional time. To address this, an efficient scheme is developed by comparing the performance of 12 combinations of three feature selection methods [no feature selection (NFS), sequential forward search (SFS), and particle swarm optimization (PSO)] and four classification methods [non-adaptive support vector machine (N-SVM), incremental SVM (I-SVM), SVM based on TrAdaBoost (T-SVM), and I-SVM based on TrAdaBoost (TI-SVM)] in the classification of EMG data of 12 subjects for 5 consecutive days. Our results showed that TI-SVM achieved the highest classification accuracy among the classification methods (p < 0.05). The SFS method achieved the same classification accuracy as that of the scheme trained with the feature vectors selected by the NFS method (p = 0.999) while achieving a lower training time than that of TI-SVM combined with the NFS method (p = 0.043). Although the PSO method outperformed the NFS and SFS methods by achieving reduced training and response times (p < 0.05), the PSO method achieved a considerably lower classification accuracy than that of the scheme trained with the feature vectors selected by the NFS (p = 0.001) or SFS (p = 0.001) method. Furthermore, TI-SVM combined with the SFS method outperformed the CNN method with fine-tuning in classification accuracy on a small data set (p = 0.001). The results indicate that TI-SVM combined with the SFS method is suitable for improving the performance of EMG pattern recognition in repeated uses.


Sign in / Sign up

Export Citation Format

Share Document