scholarly journals Harnessing the Potential of Symbiotic Endophytic Fungi and Plant Growth-Promoting Rhizobacteria to Enhance Soil Quality in Saline Soils

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1810
Author(s):  
Zahra Rouydel ◽  
Mohsen Barin ◽  
Mir Hassan Rasouli-Sadaghiani ◽  
Maryam Khezri ◽  
Ramesh Raju Vetukuri ◽  
...  

Soil salinity is one of the most important abiotic stresses limiting crop growth and production worldwide. Some microorganisms can improve the plants’ tolerance to salinity. For this purpose, a greenhouse experiment was performed to understand the influence of various microorganisms on soil biological indices and wheat growth under different saline conditions. The factors varied in the experiment were the microbial treatment (rhizobacteria, mycorrhizal fungi, endophytic fungus, and control) and salinity stress (0.5, 8, and 14 dS m−1). Rhizobacteria were isolated from saline soils, but the fungi were prepared from a microbial bank. Overall, ten isolates were purified, and three with promising growth-promoting properties were identified using phenotypic and molecular methods. The selected isolates belonged to the genera Pseudomonas (P. aeruginosa Ur83 and P. fluorescens Ur67) and Stenotrophomonas (S. maltophilia Ur52). Soil quality indices were found to decrease with increasing salinity, but inoculation with microorganisms alleviated this decline. Inoculation with plant growth-promoting rhizobacteria (PGPRs) increased basal respiration, substrate-induced respiration, microbial biomass carbon, acid and alkaline phosphatase activities, and carbon availability by factors of 1.37, 1.27, 1.83, 3.07, 1.29, and 1.11, respectively. These results show that inoculation with symbiotic microorganisms can improve agricultural soil quality under saline conditions and may thus be valuable in agriculture.

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1531
Author(s):  
Narcisa Urgiles-Gómez ◽  
María Eugenia Avila-Salem ◽  
Paúl Loján ◽  
Max Encalada ◽  
Leslye Hurtado ◽  
...  

Coffee is an important, high-value crop because its roasted beans are used to produce popular beverages that are consumed worldwide. Coffee plantations exist in over 70 countries and constitute the main economic activity of approximately 125 million people. Currently, there is global concern regarding the excessive use of agrochemicals and pesticides in agriculture, including coffee crops. This situation has motivated researchers, administrators, and farmers to seek ecologically friendly alternatives to decrease the use of synthetic fertilizers and pesticides. In the last decades, multiple studies of the rhizosphere, at the chemical, physical and biological levels, have improved our understanding of the importance of beneficial microorganisms to plant health and growth. This review aims to summarize the state of the use of plant growth-promoting microorganisms (PGPM) in coffee production, where the most extensively studied microorganisms are beneficial plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This review also contains information on PGPM, in regard to plantations at different latitudes, isolation techniques, mass multiplication, formulation methods, and the application of PGPM in nurseries, monoculture, and coffee agroforestry systems. Finally, this review focuses on relevant research performed during the last decade that can help us improve sustainable coffee production.


2019 ◽  
Vol 10 ◽  
Author(s):  
Dilfuza Egamberdieva ◽  
Stephan Wirth ◽  
Sonoko Dorothea Bellingrath-Kimura ◽  
Jitendra Mishra ◽  
Naveen K. Arora

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1596
Author(s):  
Karivaradharajan Swarnalakshmi ◽  
Vandana Yadav ◽  
Deepti Tyagi ◽  
Dolly Wattal Dhar ◽  
Annapurna Kannepalli ◽  
...  

Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.


Sign in / Sign up

Export Citation Format

Share Document