scholarly journals Development and Characterization of Functional O/W Emulsions with Chia Seed (Salvia hispanica L.) by-Products

Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 20
Author(s):  
Luciana M. Julio ◽  
Vanesa Y. Ixtaina ◽  
Mabel C. Tomás

Physicochemical properties of O/W emulsions containing functional ingredients (high ω-3 fatty acid content, protein, and soluble fiber) from chia seeds with different protein–carbohydrate combinations (sodium caseinate-lactose, sodium caseinate-maltodextrin, and chia protein-rich fraction-maltodextrin) and chia mucilage were studied. Sodium caseinate with lactose or maltodextrin produced O/W emulsions with small droplet size, high uniformity in droplet size distribution, negatively charged droplets (pH 6.5), pseudoplastic behavior, and high physical stability. Emulsions with chia protein-rich fraction presented wider droplet size distribution and higher D3.2 values than the previous ones, recording a Newtonian behavior. The addition of chia mucilage affected the rheological characteristics of emulsions.

2003 ◽  
Vol 9 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. A. Riscardo ◽  
J. M. Franco ◽  
C. Gallegos

This paper deals with the influence that composition of emulsifier blends exerts on the rheological properties of low-in-fat salad dressing-type emulsions. Binary blends of egg yolk and different types of amphiphilic molecules (low-molecular weight and macromolecules) were used in several proportions to stabilize emulsions by keeping constant the total amount of emulsifier. The different emulsifiers added to egg yolk were pea protein, sodium caseinate, polyoxyethylene(20)-sorbitan monolaurate (Tween 20) and sucrose distearate. Steady state flow tests and small-amplitude oscillatory measurements within the linear viscoelasticity region were carried out. Rheological tests were complemented with droplet size distribution measurements and observation of physical stability against creaming of these emulsions. It was pointed out that rheological properties, droplet size and physical stability of the emulsions studied depended on the weight ratio of emulsifiers in the binary blends, although the emulsifier total concentration remained constant, as well as the nature of the substance blended with egg yolk. These results have been explained on the basis of the relationship among rheological properties, droplet size distribution, continuous phase characteristics and interactions among different emulsifier molecules.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


2014 ◽  
Vol 32 (14) ◽  
pp. 1655-1663 ◽  
Author(s):  
Leila Kavoshi ◽  
Mohammad S. Hatamipour ◽  
Amir Rahimi ◽  
Mehdi Momeni

2004 ◽  
Vol 4 (5) ◽  
pp. 1255-1263 ◽  
Author(s):  
B. Mayer ◽  
M. Schröder ◽  
R. Preusker ◽  
L. Schüller

Abstract. Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI) in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.


Sign in / Sign up

Export Citation Format

Share Document