Influence of Composition of Emulsifier Blends on the Rheological Properties of Salad Dressing-Type Emulsions

2003 ◽  
Vol 9 (1) ◽  
pp. 53-63 ◽  
Author(s):  
M. A. Riscardo ◽  
J. M. Franco ◽  
C. Gallegos

This paper deals with the influence that composition of emulsifier blends exerts on the rheological properties of low-in-fat salad dressing-type emulsions. Binary blends of egg yolk and different types of amphiphilic molecules (low-molecular weight and macromolecules) were used in several proportions to stabilize emulsions by keeping constant the total amount of emulsifier. The different emulsifiers added to egg yolk were pea protein, sodium caseinate, polyoxyethylene(20)-sorbitan monolaurate (Tween 20) and sucrose distearate. Steady state flow tests and small-amplitude oscillatory measurements within the linear viscoelasticity region were carried out. Rheological tests were complemented with droplet size distribution measurements and observation of physical stability against creaming of these emulsions. It was pointed out that rheological properties, droplet size and physical stability of the emulsions studied depended on the weight ratio of emulsifiers in the binary blends, although the emulsifier total concentration remained constant, as well as the nature of the substance blended with egg yolk. These results have been explained on the basis of the relationship among rheological properties, droplet size distribution, continuous phase characteristics and interactions among different emulsifier molecules.

Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 65 ◽  
Author(s):  
Manuel Félix ◽  
Alberto Romero ◽  
Cecilio Carrera-Sanchez ◽  
Antonio Guerrero

The correlation between interfacial properties and emulsion microstructure is a topic of special interest that has many industrial applications. This study deals with the comparison between the rheological properties of oil-water interfaces with adsorbed proteins from legumes (chickpea or faba bean) and the properties of the emulsions using them as the only emulsifier, both at microscopic (droplet size distribution) and macroscopic level (linear viscoelasticity). Two different pH values (2.5 and 7.5) were studied as a function of storage time. Interfaces were characterized by means of dilatational and interfacial shear rheology measurements. Subsequently, the microstructure of the final emulsions obtained was evaluated thorough droplet size distribution (DSD), light scattering and rheological measurements. Results obtained evidenced that pH value has a strong influence on interfacial properties and emulsion microstructure. The best interfacial results were obtained for the lower pH value using chickpea protein, which also corresponded to smaller droplet sizes, higher viscoelastic moduli, and higher emulsion stability. Thus, results put forward the relevance of the interfacial tension values, the adsorption kinetics, the viscoelastic properties of the interfacial film, and the electrostatic interactions among droplets, which depend on pH and the type of protein, on the microstructure, rheological properties, and stability of legume protein-stabilized emulsions.


2009 ◽  
Vol 15 (4) ◽  
pp. 367-373 ◽  
Author(s):  
C. Bengoechea ◽  
M.L. López ◽  
F. Cordobés ◽  
A. Guerrero

Oil-in-water (o/w) emulsions stabilized by egg yolk, with a composition similar to those found in commercial mayonnaises or salad dressings, were processed in a semicontinuous device. This specially designed emulsification device consists of, basically, a vessel provided with an anchor impeller, where the continuous phase was initially placed; a pumping system that controls the addition of the oily phase; a rotor-stator unit, where the major breaking of the oily droplets takes place, and a recirculation system. The design allowed the introduction of a rotational rheometer to obtain viscosity data along the emulsification process. The most important advantages of this in-line emulsification device, when compared to discontinuous emulsification equipment, are the possibilities of recording viscosity data along the process and the higher values for the storage, G', and loss moduli, G'', of the resulting emulsions. The influence of egg yolk concentration, agitation speed, and flow rate over the rheological properties (G', G'') as well as droplet size distribution were investigated. Higher protein concentration, agitation speed and flow rate generally produce emulsions with higher G' and G'' values.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2002
Author(s):  
Karen Fuentes ◽  
Claudia Matamala ◽  
Nayaret Martínez ◽  
Rommy N. Zúñiga ◽  
Elizabeth Troncoso

This work aims to evaluate the effect of two natural (whey protein isolate, WPI, and soy lecithin) and a synthetic (Tween 20) emulsifier on physicochemical properties and physical stability of food grade nanoemulsions. Emulsions stabilized by these three surfactants and different sunflower oil contents (30% and 50% w/w), as the dispersed phase, were fabricated at two levels of homogenization pressure (500 and 1000 bar). Nanoemulsions were characterized for droplet size distribution, Zeta-potential, rheological properties, and physical stability. Dynamic light scattering showed that droplet size distributions and D50 values were strongly affected by the surfactant used and the oil content. WPI gave similar droplet diameters to Tween 20 and soy lecithin gave the larger diameters. The rheology of emulsions presented a Newtonian behavior, except for WPI-stabilized emulsions at 50% of oil, presenting a shear-thinning behavior. The physical stability of the emulsions depended on the surfactant used, with increasing order of stability as follows: soy lecithin < Tween 20 < WPI. From our results, we conclude that WPI is an effective natural replacement of synthetic surfactant (Tween 20) for the fabrication of food-grade nanoemulsions.


Proceedings ◽  
2020 ◽  
Vol 53 (1) ◽  
pp. 20
Author(s):  
Luciana M. Julio ◽  
Vanesa Y. Ixtaina ◽  
Mabel C. Tomás

Physicochemical properties of O/W emulsions containing functional ingredients (high ω-3 fatty acid content, protein, and soluble fiber) from chia seeds with different protein–carbohydrate combinations (sodium caseinate-lactose, sodium caseinate-maltodextrin, and chia protein-rich fraction-maltodextrin) and chia mucilage were studied. Sodium caseinate with lactose or maltodextrin produced O/W emulsions with small droplet size, high uniformity in droplet size distribution, negatively charged droplets (pH 6.5), pseudoplastic behavior, and high physical stability. Emulsions with chia protein-rich fraction presented wider droplet size distribution and higher D3.2 values than the previous ones, recording a Newtonian behavior. The addition of chia mucilage affected the rheological characteristics of emulsions.


2006 ◽  
Vol 16 (6) ◽  
pp. 673-686 ◽  
Author(s):  
Laszlo E. Kollar ◽  
Masoud Farzaneh ◽  
Anatolij R. Karev

Sign in / Sign up

Export Citation Format

Share Document