scholarly journals Low-Frequency Piezoelectric Accelerometer Array for Fully Implantable Cochlear Implants

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1059 ◽  
Author(s):  
János Radó ◽  
Péter Udvardi ◽  
Saeedeh Soleimani ◽  
Lucky Kenda Peter ◽  
István Bársony ◽  
...  

We demonstrate a low-volume, stress-free, piezoelectric micro-electromechanical system (MEMS) cantilever array for fully implantable hearing aids. The 12-element spiral-matrix is sensitive to the lower part of audible frequency range (300–700 Hz) through the proper resonant frequency of the individual spirals tuned by dimensions of the cantilevers. The obtained high Q-factors (117–254) provide high frequency selectivity. The generated open circuit voltage signals could be sufficient for the direct analog conversion of the signals for cochlear multielectrode implants. By comparing different geometries we have also demonstrated that the initial stress, which is derived from silicon-dioxide (SiO2) and aluminum-nitride (AlN) layers, could be drastically reduced simply by the spiral geometry. The results of vibration measurements have shown a good agreement with the calculated resonant frequencies.

2019 ◽  
Vol 23 ◽  
pp. 233121651988670 ◽  
Author(s):  
Léo Varnet ◽  
Chloé Langlet ◽  
Christian Lorenzi ◽  
Diane S. Lazard ◽  
Christophe Micheyl

There is increasing evidence that hearing-impaired (HI) individuals do not use the same listening strategies as normal-hearing (NH) individuals, even when wearing optimally fitted hearing aids. In this perspective, better characterization of individual perceptual strategies is an important step toward designing more effective speech-processing algorithms. Here, we describe two complementary approaches for (a) revealing the acoustic cues used by a participant in a /d/-/g/ categorization task in noise and (b) measuring the relative contributions of these cues to decision. These two approaches involve natural speech recordings altered by the addition of a “bump noise.” The bumps were narrowband bursts of noise localized on the spectrotemporal locations of the acoustic cues, allowing the experimenter to manipulate the consonant percept. The cue-weighting strategies were estimated for three groups of participants: 17 NH listeners, 18 HI listeners with high-frequency loss, and 15 HI listeners with flat loss. HI participants were provided with individual frequency-dependent amplification to compensate for their hearing loss. Although all listeners relied more heavily on the high-frequency cue than on the low-frequency cue, an important variability was observed in the individual weights, mostly explained by differences in internal noise. Individuals with high-frequency loss relied slightly less heavily on the high-frequency cue relative to the low-frequency cue, compared with NH individuals, suggesting a possible influence of supra-threshold deficits on cue-weighting strategies. Altogether, these results suggest a need for individually tailored speech-in-noise processing in hearing aids, if more effective speech discriminability in noise is to be achieved.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Vijaya Kumar Name ◽  
C. S. Vanaja

Background. The aim of this study was to investigate the individual effects of envelope enhancement and high-pass filtering (500 Hz) on word identification scores in quiet for individuals with Auditory Neuropathy. Method. Twelve individuals with Auditory Neuropathy (six males and six females) with ages ranging from 12 to 40 years participated in the study. Word identification was assessed using bi-syllabic words in each of three speech processing conditions: unprocessed, envelope-enhanced, and high-pass filtered. All signal processing was carried out using MATLAB-7. Results. Word identification scores showed a mean improvement of 18% with envelope enhanced versus unprocessed speech. No significant improvement was observed with high-pass filtered versus unprocessed speech. Conclusion. These results suggest that the compression/expansion signal processing strategy enhances speech identification scores—at least for mild and moderately impaired individuals with AN. In contrast, simple high-pass filtering (i.e., eliminating the low-frequency content of the signal) does not improve speech perception in quiet for individuals with Auditory Neuropathy.


2021 ◽  
pp. 69-70
Author(s):  
Pakanati Sujana ◽  
Venkata Mahesh Gandhavalla ◽  
K. Prabhakara Rao

Introduction: COVID19 is caused by SARS-CoV-2 which is primarily transmitted through respiratory droplets and contact routes. WHO recommended the use of personal protective equipment (PPE) for prevention and N95 respirators are critical components of PPE. Breathing through N95 respirator will impart stress in the individual and that can be assessed by heart rate variability (HRV). HRV measures the variation in time between each heartbeat controlled by autonomic nervous system (ANS), which is a non invasive reliable index to identify the ANS imbalances. Aims And Objectives: This study is aimed at assessing the HRV of Interns working in COVID19 wards using N95 respirators. Methodology: This study included 100 interns in whom short term HRV was recorded using the standard protocol. Lead II of ECG was recorded using AD instruments (ADI) 8channel polygraph and HRV was analysed using Labchart 8pro software. The recordings were taken before and 1hour after wearing N95 respirator. Results: Overall HRV (SDRR) was found to decrease signicantly after wearing N95 respirator for 1hr (p=0.000). Similarly, indices representing the parasympathetic component ( RMSSD and HF ) were also found to decrease signicantly with the use of N95 respirator. Low frequency (LF) power and LF/HF ratio increased signicantly with N95 respirator use (p=0.000). Conclusion: We conclude that using N95 respirator increased sympathetic activity reecting decreased HRV in our subjects Hence we recommend that it is better to change the duty pattern for interns.


Author(s):  
Jui-Ta Chien ◽  
Yung-Hsing Fu ◽  
Chao-Ting Chen ◽  
Shun-Chiu Lin ◽  
Yi-Chung Shu ◽  
...  

This paper proposes a broadband rotational energy harvesting setup by using micro piezoelectric energy harvester (PEH). When driven in different rotating speed, the PEH can output relatively high power which exhibits the phenomenon of frequency up-conversion transforming the low frequency of rotation into the high frequency of resonant vibration. It aims to power self-powered devices used in the applications, like smart tires, smart bearings, and health monitoring sensors on rotational machines. Through the excitation of the rotary magnetic repulsion, the cantilever beam presents periodically damped oscillation. Under the rotational excitation, the maximum output voltage and power of PEH with optimal impedance is 28.2 Vpp and 663 μW, respectively. The output performance of the same energy harvester driven in ordinary vibrational based excitation is compared with rotational oscillation under open circuit condition. The maximum output voltage under 2.5g acceleration level of vibration is 27.54 Vpp while the peak output voltage of 36.5 Vpp in rotational excitation (in 265 rpm).


2002 ◽  
Vol 67 (6) ◽  
pp. 425-436 ◽  
Author(s):  
Houy Ma ◽  
Shenhao Chen ◽  
Chao Yang ◽  
Jingli Luo

The effect of nitrate ions on the electrochemical behaviour of iron (ferrite) and two carbon steels (martensite and pearlite) in sulphate solutions of different pH values was investigated by cyclic voltammetry polarization and electrochemical impedance spectroscopy. The pitting inhibiting effect of nitrate ions on ferrite in sulphate media is pH dependent. Nitrate ions were unable to inhibit the pitting on ferrite in neutral sulphate solutions, but did effectively protect passivated ferrite from pitting in acidic sulphate solutions. No pitting occurred on the surface of the martensite and pearlite specimens in sulphate solutions regardless of the pH of the solutions. At the open-circuit corrosion potentials, the three materials underwent general corrosion. The impedance spectra for the three materials measured in neutral sulphate solutions containing nitrates and chlorides at the corrosion potentials all showed a capacitive loop, while in acidic sulphate solutions their impedance spectra were greatly reduced in size and displayed at least a low frequency impedance loop (inductive or capacitive loop) besides the well-known high frequency capacitive loop. The variation of the impedance behaviour with pH is explained.


2010 ◽  
Vol 2 (2) ◽  
pp. 139-142
Author(s):  
Mohan Kameswaran ◽  
S Raghunandhan

Abstract Hearing aids are the principal means of auditory rehabilitation for patients with moderate to severe sensori-neural hearing loss. Although technical improvements and modifications have improved the fidelity of conventional aids, hearing aids still have many limitations including the inherent self consciousness and social stigma attached to visible hearing aids. The recently introduced totally implantable hearing aids offer patients with hearing loss several potential advantages over conventional hearing aids. This article reviews the indications, surgical procedure, advantages and the current status of totally implantable hearing devices.


The combined effect of various parameters of gravity modulation on the onset of ferroconvection is studied for both linear and non-linear stability. The effect of various parameters of ferroconvection is studied for linear stability analysis. The resulting seven-mode generalized Lorenz model obtained in non-linear stability analysis is solved using Runge -Kutta-Felberg 45 method to analyze the heat transfer. Consequently the individual effect of gravity modulation on heat transport has been investigated. Further, the effect of physical parameters on heat transport has been analyzed and depicted graphically. The low-frequency gravity modulation is observed to get an effective influence on the stability of the system. Therefore ferro convection can be advanced or delayed by controlling different governing parameters. It shows that the influence of gravity modulation stabilizes system.


Behaviour ◽  
2008 ◽  
Vol 145 (3) ◽  
pp. 297-312 ◽  
Author(s):  
Anne Savage ◽  
Joseph Soltis ◽  
Katherine Leighty ◽  
Kirsten Leong

AbstractFemale African elephants are thought to exchange 'rumble' vocalizations, but such temporally associated calls may not constitute communicative events. Affiliated females are more likely to engage in antiphonal calling, but affiliation is defined according to time spent in proximity. Affiliated partners may vocalize in sequence simply because their proximity causes them to collectively respond to shared external stimuli or due to a social facilitation effect. We used bi-variate and partial correlation analyses to test for the independent effects of the strength of the social relationship and distance between vocal partners on the likelihood of a vocal response. Female African elephants at Disney's Animal Kingdom were video-taped and outfitted with audio-recording collars that allowed for the individual identification of low-frequency rumbles. Affiliation had a strong influence on response likelihood, even after controlling for the effects of the distance between vocalizing partners. Further, the distance between vocalizing partners did not correlate with response likelihood, and factoring out the effects of affiliation did not significantly alter this result. These results suggest that rumble exchanges are communicative events that reflect social bonds, not simply artifacts of increased proximity and, therefore, provide support for functional hypotheses concerning rumble exchanges in wild African elephants.


Sign in / Sign up

Export Citation Format

Share Document