scholarly journals Impact of Beacon-Dependent Parameters on Bluetooth Low Energy Indoor Positioning Accuracy

Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1223 ◽  
Author(s):  
Gabriel de Blasio ◽  
Alexis Quesada-Arencibia ◽  
José Carlos Rodríguez-Rodríguez ◽  
Carmelo R. García ◽  
Roberto Moreno-Díaz Jr.

Blue Low Energy technology is playing an important role nowadays in ubiquitous systems, being the beacons a key element. The configuration of parameters related to the beacons, such as their transmission power or their advertising interval should be studied in order to build fingerprinting indoor positioning systems based on this technology as accurate as possible. In this work, we study the impact and the interplay of those parameters in static indoor positioning as well as the orientation effect in the calibration phase. To reduce the time of data collection, a semi-automatic system is introduced.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3087 ◽  
Author(s):  
de Blasio ◽  
Rodríguez-Rodríguez ◽  
García ◽  
Quesada-Arencibia

Indoor positioning systems (IPS) are used to locate people or objects in environments where the global positioning system (GPS) fails. The commitment to make bluetooth low energy (BLE) technology the leader in IPS and their applications is clear: Since 2009, the Bluetooth Special Interest Group (SIG) has released several improved versions. BLE offers many advantages for IPS, e.g., their emitters or beacons are easily deployable, have low power consumption, give a high positioning accuracy and can provide advanced services to users. Fingerprinting is a popular indoor positioning algorithm that is based on the received signal strength (RSS); however, its main drawbacks are that data collection is a time-consuming and labor-intensive process and its main challenge is that positioning accuracy is affected by various factors. The purpose of this work was to develop a semi-automatic data collection support system in a BLE fingerprinting-based IPS to: (1) Streamline and shorten the data collection process, (2) carry out impact studies by protocol and channel on the static positioning accuracy related to configuration param of the beacons, such as transmission power (Tx) and the advertising interval (A), and their number and geometric distribution. With two types of systems-on-chip (SoCs) integrated in Bluetooth 5 beacons and in two different environments, our results showed that on average in the three BLE advertising channels, the configuration of the highest Tx (+4 dBm) in the beacons produced the best accuracy results. However, the lowest Tx (−20 dBm) did not worsen them excessively (only 11.8%). In addition, in both scenarios, when lowering the density of beacons by around 42.7%–50%, the error increase was only around 8%–9.2%.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4351 ◽  
Author(s):  
Ashraf ◽  
Hur ◽  
Park

The applications of location-based services require precise location information of a user both indoors and outdoors. Global positioning system’s reduced accuracy for indoor environments necessitated the initiation of Indoor Positioning Systems (IPSs). However, the development of an IPS which can determine the user’s position with heterogeneous smartphones in the same fashion is a challenging problem. The performance of Wi-Fi fingerprinting-based IPSs is degraded by many factors including shadowing, absorption, and interference caused by obstacles, human mobility, and body loss. Moreover, the use of various smartphones and different orientations of the very same smartphone can limit its positioning accuracy as well. As Wi-Fi fingerprinting is based on Received Signal Strength (RSS) vector, it is prone to dynamic intrinsic limitations of radio propagation, including changes over time, and far away locations having similar RSS vector. This article presents a Wi-Fi fingerprinting approach that exploits Wi-Fi Access Points (APs) coverage area and does not utilize the RSS vector. Using the concepts of APs coverage area uniqueness and coverage area overlap, the proposed approach calculates the user’s current position with the help of APs’ intersection area. The experimental results demonstrate that the device dependency can be mitigated by making the fingerprinting database with the proposed approach. The experiments performed at a public place proves that positioning accuracy can also be increased because the proposed approach performs well in dynamic environments with human mobility. The impact of human body loss is studied as well.


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


Author(s):  
G. G. Haagmans ◽  
S. Verhagen ◽  
R. L. Voûte ◽  
E. Verbree

Since GPS tends to fail for indoor positioning purposes, alternative methods like indoor positioning systems (IPS) based on Bluetooth low energy (BLE) are developing rapidly. Generally, IPS are deployed in environments covered with obstacles such as furniture, walls, people and electronics influencing the signal propagation. The major factor influencing the system performance and to acquire optimal positioning results is the geometry of the beacons. The geometry of the beacons is limited to the available infrastructure that can be deployed (number of beacons, basestations and tags), which leads to the following challenge: Given a limited number of beacons, where should they be placed in a specified indoor environment, such that the geometry contributes to optimal positioning results? This paper aims to propose a statistical model that is able to select the optimal configuration that satisfies the user requirements in terms of precision. The model requires the definition of a chosen 3D space (in our case 7 × 10 × 6 meter), number of beacons, possible user tag locations and a performance threshold (e.g. required precision). For any given set of beacon and receiver locations, the precision, internal- and external reliability can be determined on forehand. As validation, the modeled precision has been compared with observed precision results. The measurements have been performed with an IPS of BlooLoc at a chosen set of user tag locations for a given geometric configuration. Eventually, the model is able to select the optimal geometric configuration out of millions of possible configurations based on a performance threshold (e.g. required precision).


Computation ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Olaoluwa Popoola ◽  
Sinan Sinanović ◽  
Wasiu Popoola ◽  
Roberto Ramirez-Iniguez

Overlap of footprints of light emitting diodes (LEDs) increases the positioning accuracy of wearable LED indoor positioning systems (IPS) but such an approach assumes that the footprint boundaries are defined. In this work, we develop a mathematical model for defining the footprint boundaries of an LED in terms of a threshold angle instead of the conventional half or full angle. To show the effect of the threshold angle, we compare how overlaps and receiver tilts affect the performance of an LED-based IPS when the optical boundary is defined at the threshold angle and at the full angle. Using experimental measurements, simulations, and theoretical analysis, the effect of the defined threshold angle is estimated. The results show that the positional time when using the newly defined threshold angle is 12 times shorter than the time when the full angle is used. When the effect of tilt is considered, the threshold angle time is 22 times shorter than the full angle positioning time. Regarding accuracy, it is shown in this work that a positioning error as low as 230 mm can be obtained. Consequently, while the IPS gives a very low positioning error, a defined threshold angle reduces delays in an overlap-based LED IPS.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5226 ◽  
Author(s):  
Tianli Wu ◽  
Hao Xia ◽  
Shuo Liu ◽  
Yanyou Qiao

High-precision indoor positioning is important for modern society. This paper proposes a way to achieve high positioning accuracy and obtain a trajectory close to the actual path in a common application scenario by smartphone without the use of a complicated algorithm. In the actual positioning process, a stable signal source can reduce the signal interference caused by environments. Bluetooth low energy has its own advantages in indoor positioning because it can be seen as a more stable signal source. In this study, we used smartphones to record the changing Bluetooth signals and used a basic nearest neighbor, weight centroid, and probability-based method, which we called an advanced weighted centroid method, to obtain position coordinates and the motion trajectory during the experiment. We used a weight centroid method based on least squares to solve the overdetermined problem. This can also be used to calculate the initial position of the advanced weight centroid. The advanced weighted centroid method introduced a Gaussian distribution to model the distribution of the signal. Translating a deterministic problem into a fuzzy probability problem aligns more with positioning facts and can achieve better results. Experimental results showed that the root-mean-square error (RMSE) of the dynamic positioning result obtained through the probabilistic method was within 1 m and had a more consistent trajectory. Moreover, the impact of the number of iBeacons on the positioning accuracy has been discussed, and a reference for iBeacon placement has been provided. In addition, an experiment was also conducted on the effect of signal transmission frequency on accuracy.


Smart Cities ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 793-805
Author(s):  
Tor Åsmund Evjen ◽  
Seyed Reza Hosseini Raviz ◽  
Sobah Abbas Petersen ◽  
John Krogstie

Synthesizing the Internet of Things (IoT) with building information modeling (BIM) can improve the performance of the data collection. In this regard, BIM endeavors to enable real-time monitoring conditions of buildings. This paper is focused on the indoor positioning system (IPS) as a key enabling technology for IoT applications, which uses smart and non-smart mobile devices (object tags and beacons) with the aim of positioning and objects tracking that lead to a smart approach in the field of facility management (FM). Hence, we have surveyed the joint use of IPS and BIM in FM based on the concept of enterprise BIM (EBIM). EBIM forms the basis for the future strategic real estate management using virtual models and open standards. As a result, we gained the ability to collect positioning data continuously, save them in a BIM database, and present them on two-dimensional (2D) maps. This is a part of an ongoing study that aims to use data collection effectively for FM as an organizational function in large and complex buildings. Hence, for this purpose, we have considered St. Olavs Hospital, one of the biggest healthcare centers in Norway, as a case study. The effectiveness of data collection by IoT devices installed in buildings and how the combination of BIM and IoT technology can support a holistic view of the status of the buildings, which subsequently can enhance data usage efficiency and FM development, will be demonstrated.


Sign in / Sign up

Export Citation Format

Share Document