scholarly journals Osseodensification Drilling vs. Standard Protocol of Implant Site Preparation: An In Vitro Study on Polyurethane Foam Sheets

Prosthesis ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 76-86
Author(s):  
Luca Comuzzi ◽  
Margherita Tumedei ◽  
Adriano Piattelli ◽  
Giovanna Iezzi

(1) Background: The aim of the present in vitro investigation was to evaluate, on polyurethane sheets, two different drilling techniques for dental implant positioning using osteocondensing burs compared to a standard type protocol. (2) Methods: Three different implant designs (Implacil De Bortoli UN III 4 × 10 mm, Restore RBM 4 (HEX) × 10 mm; Implacil De Bortoli UN II 4 × 10 mm) were evaluated (test implant (osteocondensing drills) and control implant (standard drills)). The insertion torque (IT), the removal torque (RT) and the resonance frequency analysis (RFA) values of test and control implants inserted in different size and different density polyurethane foam models were compared for 120 experimental sites. Accordingly, 120 experimental holes were produced in different PCF polyurethane foams: 60 sites were produced in 10 PCF sheets and 60 sites in 10 PCF sheets with an additional 1 mm layer of 30 PCF. (3) Results: The IT, removal torque and RFA values were significantly higher for both of the evaluated implants, in the sites prepared with the osteocondenser drills when compared to sites prepared with standard drills (p < 0.05). The UNII and UN III showed significantly higher stability compared to the HEX implant; these differences increased drastically in the 10 PCF Polyurethane Block with the additional 1 mm cortical layer (p < 0.05). (4) Conclusions: The outcome of this investigation suggested a possible clinical application of osteocondensing burs in case of reduced bone quality and quantity in the posterior maxilla.


2020 ◽  
pp. 026248932097179
Author(s):  
Margherita Tumedei ◽  
Adriano Piattelli ◽  
Antonello Falco ◽  
Francesco De Angelis ◽  
Felice Lorusso ◽  
...  

The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla



Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1020 ◽  
Author(s):  
Luca Comuzzi ◽  
Giovanna Iezzi ◽  
Adriano Piattelli ◽  
Margherita Tumedei

Objectives: The aim of this study was to investigate, in polyurethane foam sheets, the primary implant stability of a NanoShort implant compared to a self-condenser implant and to a standard, conventional implant. Materials and Methods: Three implant designs were evaluated in the present in vitro investigation: The Test implant (NanoShort), the Control A implant (self-condenser), and the Control B implant (standard design). The study was conducted by comparing the insertion torque values, the pull-out strength values, and the resonance frequency analysis (RFA) values of the Test and Control A and B implants inserted in polyurethane foam models of different thicknesses and densities. The foam densities were 10, 20, and 30 pounds per cubic foot (pcf). Three thicknesses of polyurethane foams (1, 2, 3 mm) were evaluated for a total of 640 experimental sites. Results: The Pearson correlation showed a moderate/strong correlation between all study groups (r > 0.3) for insertion torque and pull-out strength levels. Increased stability of the Test implants was obtained in 3 mm polyurethane sheets. The 2.5 and 3.5 mm Test implants presented good stability in 3 mm polyurethane sheets of 20–30 pcf densities. The Control implants showed better results compared to the Test implants in 1, 2, and 3 mm polyurethane sheets with densities of 10, 20, and 30 pcf. Conclusions: The NanoShort dental implant evaluated in this in vitro study showed a high level of stability in some experimental conditions, and could represent a useful tool, especially in the posterior mandible, as an alternative to vertical augmentation procedures.



Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1349 ◽  
Author(s):  
Luca Comuzzi ◽  
Margherita Tumedei ◽  
Adriano Piattelli ◽  
Giovanna Iezzi

The aim of the investigation was to evaluate the insertion torque, pull-out torque and implant stability quotient (ISQ) of short implants (SI) and standard length implants (ST) inserted into linearly elastic and constitutive isotropic symmetry polyurethane foam blocks. Short dental titanium implants with a Cone Morse connection and a conical shape (test implants: Test Implant A—diameter 5.5 mm and length 6 mm) (Test Implant B—diameter 5.5 mm and length 5 mm) were used for the present in vitro investigation. ST implants (4 mm diameter and 10 mm length), with a Cone Morse connection and a conical shape, were used as Control Implant A and as Control Implants B. These two latter implants had a different macro design. A total of 20 implants (5 Test A, 5 Test B, 5 Control A and 5 Control B) were used for the present research. The results were similar when comparing the Test A and Test B implants. The test implants had very good stability in polyurethane 14.88–29.76 kgm3 density blocks. The insertion torque values were very high for both types of test implant (25–32 Ncm on 14.88 kgm blocks, and up to 45 Ncm in 29.76 kgm3 blocks). The pull-out test values were very similar to the insertion torque values. The ISQ values were significantly high with 75–80 in 14.88 kgm3 blocks, and 78–83 in 29.76 kgm3 blocks. No differences were found in the values of the Control A and Control B implants. In both these implants, the insertion torque was quite low in the 14.88 kgm3 blocks (16–28 Ncm). Better results were found in the 29.76 kgm3 blocks. The pull-out values for these control implants were slightly lower than the insertion torque values. High ISQ values were found in both control implants (57–80). When comparing SI and ST implants, the SI had a similar if not better performance in low quality polyurethane foam blocks (14.88–29.76 kgm), corresponding to D3 and D4 bone.



Author(s):  
Luca Comuzzi ◽  
Margherita Tumedei ◽  
Camillo D’Arcangelo ◽  
Adriano Piattelli ◽  
Giovanna Iezzi

Background: Several different dental implant microgeometries have been investigated in the literature for use in low-density bone sites. The polyurethane solid rigid blocks represent an optimal in vitro study model for dental implants, because their composition is characterized by symmetrical linear chains of monomers of hexa-methylene sequences producing a self-polymerization process. The aim of the present investigation was to evaluate the primary stability of cylindrical and tapered implants positioned into low-density polyurethane solid rigid blocks. Materials and Methods: Two different macrogeometries, cylindrical (4 mm diameter and 10 mm length) and tapered dental implants (4.20 mm diameter and 10 mm length), were investigated in the present study. The implants were inserted into 10 PCF and 20 PCF polyurethane blocks, with and without an additional cortical layer. The insertion torque (IT) values, the removal torque values (RTVs), and the resonance frequency analysis (RFA) values were measured and recorded. Results: A total of 80 sites were tested, and a significant increased primary stability (PS) was detected in favour of tapered dental implants when compared to cylindrical implants in all experimental conditions (p < 0.05). Higher IT, RT, and RFA values were measured in tapered implants in 10 and 20 PCF polyurethane blocks, both with and without the additional cortical layer. Conclusions: Both implants showed sufficient primary stability in poor density substrates, while, on the other hand, the tapered microgeometry showed characteristics that could also lead to clinical application in low-density posterior maxillary sites, even with a drastically decreased bone cortical component.



2019 ◽  
Vol 72 (4) ◽  
pp. 375-393
Author(s):  
K. Kapnisis ◽  
H. Seidner ◽  
M. Prokopi ◽  
D. Pasias ◽  
C. Pitsillides ◽  
...  

 Despite their wide clinical usage, stent functionality may be compromised by complications at the site of implantation, including early/late stent thrombosis and occlusion. Although several studies have described the effect of fluid-structure interaction on local haemodynamics, there is yet limited information on the effect of the stent presence on specific hemorheological parameters. The current work investigates the red blood cell (RBC) mechanical behavior and physiological changes as a result of flow through stented vessels. Blood samples from healthy volunteers were prepared as RBC suspensions in plasma and in phosphate buffer saline at 45% haematocrit. Self-expanding nitinol stents were inserted in clear perfluoroalkoxy alkane tubing which was connected to a syringe, and integrated in a syringe pump. The samples were tested at flow rates of 17.5, 35 and 70 ml/min, and control tests were performed in non-stented vessels. For each flow rate, the sample viscosity, RBC aggregation and deformability, and RBC lysis were estimated. The results indicate that the presence of a stent in a vessel has an influence on the hemorheological characteristics of blood. The viscosity of all samples increases slightly with the increase of the flow rate and exposure. RBC aggregation and elongation index (EI) decrease as the flow rate and exposure increases. RBC lysis for the extreme cases is evident. The results indicate that the stresses developed in the stent area for the extreme conditions could be sufficiently high to influence the integrity of the RBC membrane.



2010 ◽  
Vol 33 (6) ◽  
pp. 660-666 ◽  
Author(s):  
C. Z. Y. Whang ◽  
D. Bister ◽  
M. Sherriff


2013 ◽  
Vol 39 (1) ◽  
pp. 52-57
Author(s):  
Philipp Kreißel ◽  
Felix Kölpin ◽  
Friedrich Graef ◽  
Manfred Wichmann ◽  
Matthias Karl

Achieving sufficient primary implant stability in poor-quality bone is difficult. Other than for conventional osteotomes, little is known about the effectiveness of screw-shaped spreaders in condensing bone and increasing primary stability. Therefore, implant stability quotient (ISQ) measurements of implants placed in bone surrogate models were conducted. Whereas bony microarchitecture had no effect on implant stability, initial bone density, presence of a cortical layer, and the use of screw-shaped spreaders significantly increased ISQ levels.



2018 ◽  
Vol 120 (5) ◽  
pp. 706-714 ◽  
Author(s):  
Danilo Alessio Di Stefano ◽  
Paolo Arosio ◽  
Giorgio Gastaldi ◽  
Enrico Gherlone


2016 ◽  
Vol 42 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Russell Wang ◽  
Steven J. Eppell ◽  
Christian Nguyen ◽  
Nathan Morris

The specific aim of this study was to examine the relative contributions to the implant insertion torque value (ITV) by cortical and trabecular components of an in vitro bone model. Simulated bone blocks of polyurethane were used with 2 densities of foam (0.08 g/cm3 to mimic trabecular bone and 0.64 g/cm3 to mimic cortical bone). We have developed a new platform technology to collect data that enables quantitative evaluation of ITV at different implant locations. Seven groups were used to model varying thicknesses of cortical bone over a lower-quality trabecular bone that have clinical significance: a solid 0.08 g/cm3 block; 1 mm, 2 mm, and 3 mm thick 0.64 g/cm3 sheets with no underlayer; and 1 mm, 2 mm, and 3 mm thick 0.64 g/cm3 sheets laminated on top of a 4 cm thick 0.08 g/cm3 block. The ITVs were recorded as a function of insertion displacement distance. Relative contributions of ITV ranged from 3% to 18% from trabecular bone, and 62% to 74% from cortical bone depending on the thickness of the cortical layer. Inserting an implant into 2-mm and 3-mm cortical layers laminated atop trabecular blocks had a synergistic effect on ITVs. Finally, an implant with a reverse bevel design near the abutment showed final average torque values that were 14% to 34% less than their maximum torque values. This work provides basic quantitative information for clinicians to understand the influence of composite layers of bone in relation to mechanical torque resistances during implant insertion in order to obtain desired primary implant stability.



Sign in / Sign up

Export Citation Format

Share Document