scholarly journals Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Vincent Moreau ◽  
Piero Dos Reis ◽  
François Vuille

The transition from a fossil fuel base to a renewable energy system relies on materials and, in particular, metals to manufacture and maintain energy conversion technologies. Supply constraints shift from fossil fuels to mineral resources. We assess the availability of metal reserves and resources to build an energy system based exclusively on renewable energy technologies. A mass balance of 29 metals embodied in renewable energy technologies is compiled in order to satisfy global energy demand, based on five authoritative energy scenarios for 2050. We expand upon these scenarios by modeling the storage capacity needed to support high shares of intermittent renewables (wind and solar). The metal requirements are then compared with the current demand and proven reserves and ultimate mineable resources. This allows us to distinguish between constraints related to renewable energy sources from those linked to technology mixes. The results show that proven reserves and, in specific cases, resources of several metals are insufficient to build a renewable energy system at the predicted level of global energy demand by 2050. The comparison between reserves and resources shows that scarcity relates sometimes more to techno economic supply than to raw material availability. Our results also highlight the importance of substitution among technologies and metals as well as the limited impact of recycling on the depletion of scarce metals.

2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 97-106 ◽  
Author(s):  
Dragan Urosevic ◽  
Branka Gvozdenac-Urosevic

In recent years, renewable energy sources have played an increasingly important role in potential energy production. The integration of renewable energy technologies into existing national energy system has therefore become a major challenge for many countries. Due to the importance of this matter, this paper deals with the comprehensive analysis for implementation of a power plant on biomass (straw). The analysis is conducted regarding several key indicators: availability of biomass, regulation, reduction of greenhouse gas emissions, location, land use, electricity price and social impacts. The analysis also includes favorable price for electricity produced from biomass relevant to national feed in tariffs. In order to demonstrate all above mentioned indicators, the region in Serbia (Province of Vojvodina) with significant potential in biomass, especially in straw, is selected. The results of the analysis are validated trough environmental and social aspects. Special attention is given to identifying risks for this application.


Taking into consideration of continuously increasing consumption of the electricity and perturb towards environmental issues, renewable energy sources have been broadly used for generation of electricity. A Hybrid Energy System can be elucidated as systems which consist of various energy sources such as wind, solar, fuel cell, diesel generator and storage systems such as batteries to store energy are integrated and interconnected to satisfy the load energy demand. This paper infers the generation of electricity by utilizing the Hybrid Renewable Energy System (HRES). This paper presents the modelling and future challenges of the HRES.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1164 ◽  
Author(s):  
Indre Siksnelyte-Butkiene ◽  
Edmundas Kazimieras Zavadskas ◽  
Dalia Streimikiene

Different power generation technologies have different advantages and disadvantages. However, if compared to traditional energy sources, renewable energy sources provide a possibility to solve the climate change and economic decarbonization issues that are so relevant today. Therefore, the analysis and evaluation of renewable energy technologies has been receiving increasing attention in the politics of different countries and the scientific literature. The household sector consumes almost one third of all energy produced, thus studies on the evaluation of renewable energy production technologies in households are very important. This article reviews the scientific literature that have used multiple-criteria decision-making (MCDM) methods as a key tool to evaluate renewable energy technologies in households. The findings of the conducted research are categorized according to the objectives pursued and the criteria on which the evaluation was based are discussed. The article also provides an overview and in-depth analysis of MCDM methods and distinguishes the main advantages and disadvantages of using them to evaluate technologies in households.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 182 ◽  
Author(s):  
Lukas Kriechbaum ◽  
Thomas Kienberger

In developed countries like Austria the renewable energy potential might outpace the demand. This requires primary energy efficiency measures as well as an energy system design that enables the integration of variable renewable energy sources. Municipal energy systems, which supply customers with heat and electricity, will play an important role in this task. The cumulative exergy consumption methodology considers resource consumption from the raw material to the final product. It includes the exergetic expenses for imported energy as well as for building the energy infrastructure. In this paper, we determine the exergy optimal energy system design of an exemplary municipal energy system by using cumulative exergy consumption minimisation. The results of a case study show that well a linked electricity and heat system using heat pumps, combined heat power plants and battery and thermal storages is necessary. This enables an efficient supply and also provides the necessary flexibilities for integrating variable renewable energy sources.


Author(s):  
Jan Fabian Feldhoff ◽  
Carina Hofmann ◽  
Stefan Hübner ◽  
Jan Oliver Kammesheidt ◽  
Martin Kilbane ◽  
...  

It is broadly accepted that current energy systems should become more sustainable in both a global and local context. However, setting common goals and shared objectives and determining the appropriate means by which to get there is the subject of heavy debate. Therefore, the American Society of Mechanical Engineers (ASME) and the German Association of Engineers (VDI) initiated a joint project aimed at providing a young engineers’ perspective to the global energy conversation. The young engineer project teams set a common goal of assembling a completely sustainable energy system for the U.S. and Germany by 2050. This includes not only the electricity market, but the overall energy system. Based on the current global energy paradigm, a completely sustainable energy system seems very ambitious. However, multiple analyses show that this path is possible and would in the medium to long run not only be desirable, but also competitive in the market. This future ‘energy puzzle’ consists of many important pieces, and the overall picture must be shaped by an overarching strategy of sustainability. Besides the many detailed pieces, four main critical issues must be addressed by engineers, politicians and everybody else alike. These challenges are: i) Rational use of energy: This uncomfortable topic is rather unappealing to communicate, but is a key issue to reduce energy demand and to meet the potentials of renewable energy carriers. ii) Balancing of electricity demand and generation: This is a challenge to the electricity markets and infrastructures that are currently designed for base-load, mainly fossil power plants. The overall mix of renewable energy generation, storage technologies, grid infrastructure, and power electronics will decide how efficient and reliable a future energy system will be. iii) Cost efficiency and competitiveness: It is a prerequisite for industrialized countries to stay competitive and to establish RE in the market. Developing economic technologies while at the same time establishing a strong RE market is the secret of success. iv) Acceptance of the system and its consequences: The best energy strategy cannot be realized without broad public acceptance for it. Therefore, the understanding of the energy technologies and an objective discussion must be promoted — without old fashioned emotionalizing of certain risks. The paper will present details on the four mentioned aspects, compare the situations between the U.S. and Germany, and propose solutions for appropriate political frame conditions to achieve a sustainable energy system.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wallace Matizamhuka

Magnetic materials specifically permanent magnets are critical for the efficient performance of many renewable energy technologies. The increased reliance on renewable energy sources has accelerated research in energy-related technologies the world over. The use of rare-earth (RE) metals in permanent magnets continues to be a source of greater concern owing to the limited RE supply coupled with dwindling reserves on the globe. This review focuses on how this has impacted on the state-of-the-art magnetic materials that continue to play a pivotal role in driving renewable energy technologies. Magnetic materials are perceived as key in driving the 21st century industrial revolution, and the participation of South Africa in this energy paradigm is critical in driving a new industrial revolution within the African continent. A number of opportunities are highlighted, and clarity is given on the several ubiquitous misconceptions and the risks on the heavy reliance on a single source for RE magnetic materials.


Sign in / Sign up

Export Citation Format

Share Document