scholarly journals Assessment of Satellite and Radar Quantitative Precipitation Estimates for Real Time Monitoring of Meteorological Extremes Over the Southeast of the Iberian Peninsula

2018 ◽  
Vol 10 (7) ◽  
pp. 1023 ◽  
Author(s):  
Fulgencio Cánovas-García ◽  
Sandra García-Galiano ◽  
Francisco Alonso-Sarría
Author(s):  
Fulgencio Cánovas-García ◽  
Sandra García-Galiano ◽  
Francisco Alonso-Sarría

QPEs (Quantitative Precipitation Estimates) obtained from remote sensing or ground-based radars could complement or even be an alternative to rain gauge readings. However, to be used in operational applications, a validation process has to be carried out, usually by comparing their estimates with those of a rain gauges network. In this paper, the accuracy of two QPEs are evaluated for three extreme precipitation events in the last decade in the southeast of the Iberian Peninsula. The first QPE is PERSIANN-CCS, a satellite-based QPE. The second is a meteorological radar with Doppler capabilities that works in the C band. Pixel-to-point comparisons are made between the values offered by the QPEs and those obtained by two networks of rain gauges. The results obtained indicate that both QPEs were well below the rain gauge values, especially in extreme rainfall time slots. There seems to be a weak linear association between the value of the discrepancies and the precipitation value of the QPEs. It does not seem that radar is more accurate than PERSIANN-CCS, despite its larger spatial resolution and its commonly higher effectiveness. The main conclusion is that neither PERSIANN-CCS nor radar, without empirical calibration, are acceptable QPEs for the real-time monitoring of meteorological extremes in the southeast of the Iberian Peninsula.


2018 ◽  
Vol 23 ◽  
pp. 00028 ◽  
Author(s):  
Irena Otop ◽  
Jan Szturc ◽  
Katarzyna Ośródka ◽  
Piotr Djaków

The automatic procedure of real-time quality control (QC) of telemetric rain gauge measurements (G) has been developed to produce quantitative precipitation estimates mainly for the needs of operational hydrology. The developed QC procedure consists of several tests: gross error detection, a range check, a spatial consistency check, a temporal consistency check, and a radar and satellite conformity check. The output of the procedure applied in real-time is quality index QI(G) that quantitatively characterised quality of each individual measurement. The QC procedure has been implemented into operational work at the Institute of Meteorology and Water Management since 2016. However, some elements of the procedure are still under development and can be improved based on the results and experience collected after about two years of real-time work on network of telemetric rain gauges


2021 ◽  
Author(s):  
Yabin Gou ◽  
Haonan Chen

<p>It is well known that the performance of radar-derived quantitative precipitation estimates greatly relies on the physical model of the raindrop size distribution (DSD) and the relation between the physical model and radar parameters. However, incorporating changing precipitation microphysics to dynamically adjust the radar reflectivity (Z) and rain rate (R) relations can be challenging for real-time applications. In this study, two adaptive radar rainfall approaches are developed based on the radar-gauge feedback mechanism using 16 S-band Doppler weather radars and 4579 surface rain gauges deployed over the Eastern JiangHuai River Basin (EJRB) in China. Although the Z–R relations in both approaches are dynamically adjusted within a single precipitation system, one is using a single global optimal (SGO) Z–R relation, whereas the other is using different Z–R relations for different storm cells identified by a storm cell identification and tracking (SCIT) algorithm. Four precipitation events featured by different rainfall microphysical characteristics are investigated to demonstrate the performances of these two rainfall mapping methodologies. In addition, the short-term vertical profile of reflectivity (VPR) clusters are extensively analyzed to resolve the storm-scale characteristics of different storm cells. The verification results based on independent gauge observations show that both rainfall estimation approaches with dynamic Z–R relations perform much better than fixed Z–R relations. The adaptive approach incorporating the SCIT algorithm and real-time gauge measurements performs best since it can better capture the spatial variability and temporal evolution of precipitation.</p>


Author(s):  
Dayal Wijayarathne ◽  
Paulin Coulibaly ◽  
Sudesh Boodoo ◽  
David Sills

AbstractFlood forecasting is essential to minimize the impacts and costs of floods, especially in urbanized watersheds. Radar rainfall estimates are becoming increasingly popular in flood forecasting because they provide the much-needed real-time spatially distributed precipitation information. The current study evaluates the use of radar Quantitative Precipitation Estimates (QPEs) in hydrological model calibration for streamflow simulation and flood mapping in an urban setting. Firstly, S-band and C-band radar QPEs were integrated into event-based hydrological models to improve the calibration of model parameters. Then, rain gauge and radar precipitation estimates’ performances were compared for hydrological modeling in an urban watershed to assess radar QPE's effects on streamflow simulation accuracy. Finally, flood extent maps were produced using coupled hydrological-hydraulic models integrated within the Hydrologic Engineering Center- Real-Time Simulation (HEC-RTS) framework. It is shown that the bias correction of radar QPEs can enhance the hydrological model calibration. The radar-gauge merging obtained a KGE, MPFC, NSE, and VE improvement of about + 0.42, + 0.12, + 0.78, and − 0.23, respectively for S-band and + 0.64, + 0.36, + 1.12, and − 0.34, respectively for C-band radar QPEs. Merged radar QPEs are also helpful in running hydrological models calibrated using gauge data. The HEC-RTS framework can be used to produce flood forecast maps using the bias-corrected radar QPEs. Therefore, radar rainfall estimates could be efficiently used to forecast floods in urbanized areas for effective flood management and mitigation. Canadian flood forecasting systems could be efficiently updated by integrating bias-corrected radar QPEs to simulate streamflow and produce flood inundation maps.


2014 ◽  
Vol 11 (10) ◽  
pp. 11489-11531 ◽  
Author(s):  
O. P. Prat ◽  
B. R. Nelson

Abstract. We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over CONUS for the period 2002–2012. This comparison effort includes satellite multi-sensor datasets (bias-adjusted TMPA 3B42, near-real time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (± 6%). However, differences at the RFC are more important in particular for near-real time 3B42RT precipitation estimates (−33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near real time counterpart 3B42RT. However, large biases remained for 3B42 over the Western US for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in day-1) over the Northwest. Furthermore, the conditional analysis and the contingency analysis conducted illustrated the challenge of retrieving extreme precipitation from remote sensing estimates.


2015 ◽  
Vol 19 (4) ◽  
pp. 2037-2056 ◽  
Author(s):  
O. P. Prat ◽  
B. R. Nelson

Abstract. We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over the contiguous United States (CONUS) for the period 2002–2012. This comparison effort includes satellite multi-sensor data sets (bias-adjusted TMPA 3B42, near-real-time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation data sets are compared with surface observations from the Global Historical Climatology Network-Daily (GHCN-D) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (±6%). However, differences at the RFC are more important in particular for near-real-time 3B42RT precipitation estimates (−33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near-real-time counterpart 3B42RT. However, large biases remained for 3B42 over the western USA for higher average accumulation (≥ 5 mm day−1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in. day−1) over the Pacific Northwest. Furthermore, the conditional analysis and a contingency analysis conducted illustrated the challenge in retrieving extreme precipitation from remote sensing estimates.


2006 ◽  
Vol 175 (4S) ◽  
pp. 521-521
Author(s):  
Motoaki Saito ◽  
Tomoharu Kono ◽  
Yukako Kinoshita ◽  
Itaru Satoh ◽  
Keisuke Satoh

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-1175-Pr3-1182 ◽  
Author(s):  
M. Losurdo ◽  
A. Grimaldi ◽  
M. Giangregorio ◽  
P. Capezzuto ◽  
G. Bruno

2014 ◽  
Author(s):  
Rozaimi Ghazali ◽  
◽  
Asiah Mohd Pilus ◽  
Wan Mohd Bukhari Wan Daud ◽  
Mohd Juzaila Abd Latif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document