scholarly journals The Passive Microwave Neural Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer

2018 ◽  
Vol 10 (7) ◽  
pp. 1122 ◽  
Author(s):  
Paolo Sanò ◽  
Giulia Panegrossi ◽  
Daniele Casella ◽  
Anna Marra ◽  
Leo D’Adderio ◽  
...  

This paper describes a new rainfall rate retrieval algorithm, developed within the EUMETSAT H SAF program, based on the Passive microwave Neural network Precipitation Retrieval approach (PNPR v3), designed to work with the conically scanning Global Precipitation Measurement (GPM) Microwave Imager (GMI). A new rain/no-rain classification scheme, also based on the NN approach, which provides different rainfall masks for different minimum thresholds and degree of reliability, is also described. The algorithm is trained on an extremely large observational database, built from GPM global observations between 2014 and 2016, where the NASA 2B-CMB (V04) rainfall rate product is used as reference. In order to assess the performance of PNPR v3 over the globe, an independent part of the observational database is used in a verification study. The good results found over all surface types (CC > 0.90, ME < −0.22 mm h−1, RMSE < 2.75 mm h−1 and FSE% < 100% for rainfall rates lower than 1 mm h−1 and around 30–50% for moderate to high rainfall rates), demonstrate the good outcome of the input selection procedure, as well as of the training and design phase of the neural network. For further verification, two case studies over Italy are also analysed and a good consistency of PNPR v3 retrievals with simultaneous ground radar observations and with the GMI GPROF V05 estimates is found. PNPR v3 is a global rainfall retrieval algorithm, able to optimally exploit the GMI multi-channel response to different surface types and precipitation structures, that provide global rainfall retrieval in a computationally very efficient way, making the product suitable for near-real time operational applications.

2021 ◽  
Vol 13 (9) ◽  
pp. 1701
Author(s):  
Leonardo Bagaglini ◽  
Paolo Sanò ◽  
Daniele Casella ◽  
Elsa Cattani ◽  
Giulia Panegrossi

This paper describes the Passive microwave Neural network Precipitation Retrieval algorithm for climate applications (PNPR-CLIM), developed with funding from the Copernicus Climate Change Service (C3S), implemented by ECMWF on behalf of the European Union. The algorithm has been designed and developed to exploit the two cross-track scanning microwave radiometers, AMSU-B and MHS, towards the creation of a long-term (2000–2017) global precipitation climate data record (CDR) for the ECMWF Climate Data Store (CDS). The algorithm has been trained on an observational dataset built from one year of MHS and GPM-CO Dual-frequency Precipitation Radar (DPR) coincident observations. The dataset includes the Fundamental Climate Data Record (FCDR) of AMSU-B and MHS brightness temperatures, provided by the Fidelity and Uncertainty in Climate data records from Earth Observation (FIDUCEO) project, and the DPR-based surface precipitation rate estimates used as reference. The combined use of high quality, calibrated and harmonized long-term input data (provided by the FIDUCEO microwave brightness temperature Fundamental Climate Data Record) with the exploitation of the potential of neural networks (ability to learn and generalize) has made it possible to limit the use of ancillary model-derived environmental variables, thus reducing the model uncertainties’ influence on the PNPR-CLIM, which could compromise the accuracy of the estimates. The PNPR-CLIM estimated precipitation distribution is in good agreement with independent DPR-based estimates. A multiscale assessment of the algorithm’s performance is presented against high quality regional ground-based radar products and global precipitation datasets. The regional and global three-year (2015–2017) verification analysis shows that, despite the simplicity of the algorithm in terms of input variables and processing performance, the quality of PNPR-CLIM outperforms NASA GPROF in terms of rainfall detection, while in terms of rainfall quantification they are comparable. The global analysis evidences weaknesses at higher latitudes and in the winter at mid latitudes, mainly linked to the poorer quality of the precipitation retrieval in cold/dry conditions.


2017 ◽  
Vol 21 (6) ◽  
pp. 2685-2700 ◽  
Author(s):  
Zeinab Takbiri ◽  
Ardeshir M. Ebtehaj ◽  
Efi Foufoula-Georgiou

Abstract. We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.


2020 ◽  
Author(s):  
Mario Montopoli ◽  
Kamil Mroz ◽  
Giulia Panegrossi ◽  
Daniele Casella ◽  
Luca Baldini ◽  
...  

&lt;p&gt;Snowfall remote sensing &amp;#160;is becoming an increasingly popular topic within both the scientific community and operational services. Studies focused on snow retrievals are important because snow represents a reservoir of fresh water and its quantification is a crucial task to thoroughly understanding the hydrological cycle. In addition, snow-cover plays a key role in the climate system, modifying the global energy budget because of its high albedo. In addition, snowfalls often represent a hazard to several public services (e.g. transportations, energy providers) as well as properties (e.g. roof loading) but also an opportunity (e.g. for hydropower).&lt;/p&gt;&lt;p&gt;Passive microwave observations provided by currently operating spaceborne radiometers (e.g. Advanced Technology Microwave Sounder (ATMS), the Global Precipitation Measurement (GPM) Microwave Imager (GMI)) are a unique source of global information on the occurrence and the quantity of snowfall. However, because of the weaker and more complex signatures of snow at microwave frequencies [1] compared to those from rainfall, the retrieval schemes used by such instruments are still not fully optimised for snowfall detection and estimation, and subject to large errors. The ESA-funded RAINCAST project aims, among other tasks, at the verification of passive microwave snowfall products with the goal of fostering and defining new retrieval algorithms and mission concepts specifically optimised for snowfall quantification.&lt;/p&gt;&lt;p&gt;In this study we show a comparative analysis between passive microwave snowfall rate estimates and high quality ground-based radar snowfall measurements to quantify the actual strengths and limitations in state-of-the-art passive microwave snowfall products. In particular, the performance of the Goddard profiling algorithm version 5A (GPROF V5A) and of a recently developed snowfall retrieval algorithm for GMI named SLALOM [2, 3] are investigated. The differences between GPROF and SLALOM are explored in relation to the environmental conditions (including the presence of supercooled droplets aloft that tend to mask the typical snowfall signature) where the snowfall retrievals are likely less accurate. In addition, ATMS snowfall products are analysed as well for selected case studies to evidence the potential and limitations of the different snowfall products in relation to the algorithm&amp;#8217;s design (e.g., GPROF vs. SLALOM) and sensor characteristics (GMI and ATMS). Then quantitative assessments for all products are discussed by exploiting one year of ground reference radar network data over Northern U.S. and Canada provided by the Multi-Radar/Multi-sensor System (MRMS) product, available at 1x1 km horizontal regularresolution and 2 min time sampling, and providing gauge adjusted surface precipitation rate together with the indication of its phase.&lt;/p&gt;&lt;p&gt;Our analysis confirms results from recent work on the same topic [e.g., 4], although a long term large scale analysis that quantify passive microwave retrieval is not found in the past literature.&amp;#160;&lt;/p&gt;&lt;p&gt;This work is particularly relevant not only for the quantification of the limitations of the current snowfall retrieval algorithms, but also to give recommendations for algorithm development for upcoming satellite missions (e.g. EPS-SG MWS, MWI/ICI), and for future satellite mission concepts.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;REFERENCES&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;[1] Liu, G. et al, 2008. doi: &amp;#160;10.1029/2007JD009766.&lt;/p&gt;&lt;p&gt;[2] Rysman, J.-F. et al., 2018. doi: 10.3390/rs10081278&lt;/p&gt;&lt;p&gt;[3] Rysman J.-F., et al., 2019. doi:10.1029/2019GL084576,&lt;/p&gt;&lt;p&gt;[4] Von Lerber, et al. doi: /10.1175/JAMC-D-17-0176.1&lt;/p&gt;&lt;div&gt; &lt;div&gt; &lt;div&gt;&amp;#160;&lt;/div&gt; &lt;/div&gt; &lt;/div&gt;


2013 ◽  
Vol 30 (11) ◽  
pp. 2493-2508 ◽  
Author(s):  
Grant W. Petty ◽  
Ke Li

Abstract A new approach to passive microwave retrievals of precipitation is described that relies on an objective dimensional reduction procedure to filter, normalize, and decorrelate geophysical background noise while retaining the majority of radiometric information concerning precipitation. The dimensional reduction also sharply increases the effective density of any a priori database used in a Bayesian retrieval scheme. The method is applied to passive microwave data from the Tropical Rainfall Measuring Mission (TRMM), reducing the original nine channels to three “pseudochannels” that are relatively insensitive to most background variations occurring within each of seven surface classes (one ocean plus six land and coast) for which they are defined. These pseudochannels may be used in any retrieval algorithm, including the current standard Goddard profiling algorithm (GPROF), in place of the original channels. The same methods are also under development for the Global Precipitation Measurement (GPM) Core Observatory Microwave Imager (GMI). Starting with the pseudochannel definitions, a new Bayesian algorithm for retrieving the surface rain rate is described. The algorithm uses an a priori database populated with matchups between the TRMM precipitation radar (PR) and the TRMM Microwave Imager (TMI). The explicit goal of the algorithm is to retrieve the PR-derived best estimate of the surface rain rate in portions of the TMI swath not covered by the PR. A unique feature of the new algorithm is that it provides robust posterior Bayesian probabilities of pixel-averaged rain rate exceeding various thresholds. Validation and intercomparison of the new algorithm is the subject of a companion paper.


2008 ◽  
Vol 47 (3) ◽  
pp. 778-794 ◽  
Author(s):  
K. A. Hilburn ◽  
F. J. Wentz

Abstract The Unified Microwave Ocean Retrieval Algorithm (UMORA) simultaneously retrieves sea surface temperature, surface wind speed, columnar water vapor, columnar cloud water, and surface rain rate from a variety of passive microwave radiometers including the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). The rain component of UMORA explicitly parameterizes the three physical processes governing passive microwave rain retrievals: the beamfilling effect, cloud and rainwater partitioning, and effective rain layer thickness. Rain retrievals from the previous version of UMORA disagreed among different sensors and were too high in the tropics. These issues have been fixed with more realistic rain column heights and proper modeling of saturation and footprint-resolution effects in the beamfilling correction. The purpose of this paper is to describe the rain algorithm and its recent improvements and to compare UMORA retrievals with Goddard Profiling Algorithm (GPROF) and Global Precipitation Climatology Project (GPCP) rain rates. On average, TMI retrievals from UMORA agree well with GPROF; however, large differences become apparent when the instantaneous retrievals are compared on a pixel-to-pixel basis. The differences are due to fundamental algorithm differences. For example, UMORA generally retrieves higher total liquid water, but GPROF retrieves a higher surface rain rate for a given amount of total liquid water because of differences in microphysical assumptions. Comparison of UMORA SSM/I retrievals with GPCP shows similar spatial patterns, but GPCP has higher global averages because of greater amounts of precipitation in the extratropics. UMORA and GPCP have similar linear trends over the period 1988–2005 with similar spatial patterns.


2017 ◽  
Vol 18 (11) ◽  
pp. 3051-3070 ◽  
Author(s):  
Clément Guilloteau ◽  
Efi Foufoula-Georgiou ◽  
Christian D. Kummerow

Abstract The constellation of spaceborne passive microwave (MW) sensors, coordinated under the framework of the Precipitation Measurement Missions international agreement, continuously produces observations of clouds and precipitation all over the globe. The Goddard profiling algorithm (GPROF) is designed to infer the instantaneous surface precipitation rate from the measured MW radiances. The last version of the algorithm (GPROF-2014)—the product of more than 20 years of algorithmic development, validation, and improvement—is currently used to estimate precipitation rates from the microwave imager GMI on board the GPM core satellite. The previous version of the algorithm (GPROF-2010) was used with the microwave imager TMI on board TRMM. In this paper, TMI-GPROF-2010 estimates and GMI-GPROF-2014 estimates are compared with coincident active measurements from the Precipitation Radar on board TRMM and the Dual-Frequency Precipitation Radar on board GPM, considered as reference products. The objective is to assess the improvement of the GPM-era microwave estimates relative to the TRMM-era estimates and diagnose regions where continuous improvement is needed. The assessment is oriented toward estimating the “effective resolution” of the MW estimates, that is, the finest scale at which the retrieval is able to accurately reproduce the spatial variability of precipitation. A wavelet-based multiscale decomposition of the radar and passive microwave precipitation fields is used to formally define and assess the effective resolution. It is found that the GPM-era MW retrieval can resolve finer-scale spatial variability over oceans than the TRMM-era retrieval. Over land, significant challenges exist, and this analysis provides useful diagnostics and a benchmark against which future retrieval algorithm improvement can be assessed.


2021 ◽  
Vol 11 (10) ◽  
pp. 4686
Author(s):  
Massimiliano Sist ◽  
Giovanni Schiavon ◽  
Fabio Del Frate

A new data fusion technique based on Artificial Neural Networks (ANN) for the design of a rainfall retrieval algorithm is presented. The use of both VIS/IR (VISible and InfraRed) data from GEO (Geostationary Earth Orbit) satellite and of passive microwave data from LEO (Low Earth Orbit) satellite can take advantage of both types of sensors reducing their limitations. The technique can reconstruct the surface rain field with the MSG-SEVIRI (Meteosat Second Generation–Spinning Enhanced Visible Infrared Imager) spatial and temporal resolution, which means 3 km at the sub satellite point and 5 km at mid-latitudes, every 15 min, respectively. Rainfall estimations are also compared with H-SAF (Hydrology Satellite Application Facility) PR-OBS3A operational product showing better performance both on the identification of rainy areas and on the retrieval of the amount of precipitation. In particular, in the considered test cases, results report an improvement in average of 83% in terms of probability of rainy areas detection, of 45% in terms of false alarm rate, and of 47% in terms of root mean square error in the retrieval of the amount of precipitation.


2018 ◽  
Vol 35 (12) ◽  
pp. 2339-2358 ◽  
Author(s):  
Anil Deo ◽  
S. Joseph Munchak ◽  
Kevin J. E. Walsh

AbstractThis study cross validates the radar reflectivity Z; the rainfall drop size distribution parameter (median volume diameter Do); and the rainfall rate R estimated from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR), a combined PR and TRMM Microwave Imager (TMI) algorithm (COM), and a C-band dual-polarized ground radar (GR) for TRMM overpasses during the passage of tropical cyclone (TC) and non-TC events over Darwin, Australia. Two overpass events during the passage of TC Carlos and 11 non-TC overpass events are used in this study, and the GR is taken as the reference. It is shown that the correspondence is dependent on the precipitation type whereby events with more (less) stratiform rainfall usually have a positive (negative) bias in the reflectivity and the rainfall rate, whereas in the Do the bias is generally positive but small (large). The COM reflectivity estimates are similar to the PR, but it has a smaller bias in the Do for most of the greater stratiform events. This suggests that combining the TMI with the PR adjusts the Do toward the “correct” direction if the GR is taken as the reference. Moreover, the association between the TRMM estimates and the GR for the two TC events, which are highly stratiform in nature, is similar to that observed for the highly stratiform non-TC events (there is no significant difference), but it differs considerably from that observed for the majority of the highly convective non-TC events.


Sign in / Sign up

Export Citation Format

Share Document