scholarly journals Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer

2018 ◽  
Vol 10 (8) ◽  
pp. 1219 ◽  
Author(s):  
Viktor Banakh ◽  
Igor Smalikho

The kinetic energy of turbulence, the dissipation rate of turbulent energy, and the integral scale of turbulence in the stable atmospheric boundary layer at the location heights of low-level jets (LLJs) have been measured with a coherent Doppler light detection and ranging (lidar) system. The turbulence is shown to be weak in the central part of LLJs. The kinetic energy of turbulence at the maximum velocity heights of the jet does not exceed 0.1 (m/s)2, while the dissipation rate is about 10−5 m2/s3. On average, the integral scale of turbulence in the central part of the jet is about 100 m, which is two to three times less than the effective vertical size of the LLJ.

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 421
Author(s):  
Alexander Potekaev ◽  
Liudmila Shamanaeva ◽  
Valentina Kulagina

Spatiotemporal dynamics of the atmospheric kinetic energy and its components caused by the ordered and turbulent motions of air masses are estimated from minisodar measurements of three velocity vector components and their variances within the lowest 5–200 m layer of the atmosphere, with a particular emphasis on the turbulent kinetic energy. The layered structure of the total atmospheric kinetic energy has been established. From the diurnal hourly dynamics of the altitude profiles of the turbulent kinetic energy (TKE) retrieved from minisodar data, four layers are established by the character of the altitude TKE dependence, namely, the near-ground layer, the surface layer, the layer with a linear TKE increase, and the transitive layer above. In the first layer, the most significant changes of the TKE were observed in the evening hours. In the second layer, no significant changes in the TKE values were observed. A linear increase in the TKE values with altitude was observed in the third layer. In the fourth layer, the TKE slightly increased with altitude and exhibited variations during the entire observation period. The altitudes of the upper boundaries of these layers depended on the time of day. The MKE values were much less than the corresponding TKE values, they did not exceed 50 m2/s2. From two to four MKE layers were distinguished based on the character of its altitude dependence. The two-layer structures were observed in the evening and at night (under conditions of the stable atmospheric boundary layer). In the morning and daytime, the four-layer MKE structures with intermediate layers of linear increase and subsequent decrease in the MKE values were observed. Our estimates demonstrated that the TKE contribution to the total atmospheric kinetic energy considerably (by a factor of 2.5–3) exceeded the corresponding MKE contribution.


2015 ◽  
Vol 72 (5) ◽  
pp. 1713-1726 ◽  
Author(s):  
Jordan M. Wilson ◽  
Subhas K. Venayagamoorthy

Abstract In this study, shear-based parameterizations of turbulent mixing in the stable atmospheric boundary layer (SABL) are proposed. A relevant length-scale estimate for the mixing length of the turbulent momentum field is constructed from the turbulent kinetic energy and the mean shear rate S as . Using observational data from two field campaigns—the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment and the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99)— is shown to have a strong correlation with . The relationship between and corresponds to the ratio of the magnitude of the tangential components of the turbulent momentum flux tensor to , known as stress intensity ratio, . The field data clearly show that is linked to stability. The stress intensity ratio also depends on the flow energetics that can be assessed using a shear-production Reynolds number, , where P is shear production of turbulent kinetic energy and is the kinematic viscosity. This analysis shows that high mixing rates can indeed persist at strong stability. On this basis, shear-based parameterizations are proposed for the eddy diffusivity for momentum, , and eddy diffusivity for heat, , showing remarkable agreement with the exact quantities. Furthermore, a broader assessment of the proposed parameterizations is given through an a priori evaluation of large-eddy simulation (LES) data from the first GEWEX Atmospheric Boundary Layer Study (GABLS). The shear-based parameterizations outperform many existing models in predicting turbulent mixing in the SABL. The results of this study provide a framework for improved representation of the SABL in operational models.


2021 ◽  
Author(s):  
Ekaterina Tkachenko ◽  
Andrey Debolskiy ◽  
Evgeny Mortikov

<div>This study investigates the dynamics of the evening transition in the atmospheric boundary layer (ABL) diurnal cycle, specifically the decay of the turbulent kinetic energy (TKE) taking place there. Generally, the TKE decay is assumed to follow the power law E(t) ~ t<sup>-α,</sup> where E(t) and t are normalized TKE and normalized time, respectively, and the parameter α determines the decay rate. </div><div> <p>Two types of ABL numerical modeling are compared: three-dimensional large-eddy simulation (LES) models and one-dimensional Reynolds-averaged Navier-Stokes (RANS) models. The evening transition is simulated through facilitating the formation of the convective boundary layer (CBL) by having a constant positive surface heat flux, and the subsequent decay of the CBL when the surface heat flux is decreased. </p> <p>Several features of this process have been studied in relative depth, in particular the TKE decay rate at different stages of the evening transition, the sensitivity of the results to the domain size, and the dynamics of the large- and small-scale turbulence during the transition period. LES experiments with different setups were performed, and the results were then compared to those obtained through RANS experiments based on the k-epsilon model (a two-equation model for TKE and dissipation rate, where model constants are chosen to allow for correct simulation of SBL main properties [1], as well as CBL growth rate [2]).</p> <p>This study was funded by Russian Foundation of Basic Research within the project N 20-05-00776 and the grant of the RF President within the MK-1867.2020.5 project.</p> <div>1. Mortikov E. V., Glazunov A. V., Debolskiy A. V., Lykosov V. N., Zilitinkevich S. S. Modeling of the Dissipation Rate of Turbulent Kinetic Energy // Doklady Earth Sciences. 2019. V. 489(2). P. 1440-1443 </div> <p>2. Burchard H. Applied Turbulence Modelling in Marine Waters. Berlin, Germany: Springer, 2002. P. 57-59</p> </div>


2020 ◽  
Vol 12 (6) ◽  
pp. 955 ◽  
Author(s):  
Viktor A. Banakh ◽  
Igor N. Smalikho ◽  
Andrey V. Falits

The paper presents the results of probing the stable atmospheric boundary layer in the coastal zone of Lake Baikal with a coherent Doppler wind lidar and a microwave temperature profiler. Two-dimensional height–temporal distributions of the wind velocity vector components, temperature, and parameters characterizing atmospheric stability and wind turbulence were obtained. The parameters of the low-level jets and the atmospheric waves arising in the stable boundary layer were determined. It was shown that the stable atmospheric boundary layer has an inhomogeneous fine scale layered structure characterized by strong variations of the Richardson number Ri. Layers with large Richardson numbers alternate with layers where Ri is less than the critical value of the Richardson number Ricr = 0.25. The channels of decreased stability, where the conditions are close to neutral stratification 0 < Ri < 0.25, arise in the zone of the low-level jets. The wind turbulence in the central part of the observed jets, where Ri > Ricr, is weak, increases considerably to the periphery of jets, at heights where Ri < Ricr. The turbulence may intensify at the appearance of internal atmospheric waves.


2017 ◽  
Author(s):  
Igor N. Smalikho ◽  
Viktor A. Banakh

Abstract. The method and results of lidar studies of spatiotemporal variability of wind turbulence in the atmospheric boundary layer are reported. The measurements were conducted by a Stream Line pulsed coherent Doppler lidar with the use of conical scanning by a probing beam around the vertical axis. Lidar data are used to estimate the kinetic energy of turbulence, turbulent energy dissipation rate, integral scale of turbulence, and momentum fluxes. The dissipation rate was determined from the azimuth structure function of radial velocity within the inertial subrange of turbulence. When estimating the kinetic energy of turbulence from lidar data, we took into account the averaging of radial velocity over the sensing volume. The integral scale of turbulence was determined on the assumption that the structure of random irregularities of the wind field is described by the von Karman model. The domain of applicability of the used method and the accuracy of estimation of turbulence parameters were determined. Turbulence parameters estimated from Stream Line lidar measurement data and from data of a sonic anemometer were compared.


2017 ◽  
Vol 10 (11) ◽  
pp. 4191-4208 ◽  
Author(s):  
Igor N. Smalikho ◽  
Viktor A. Banakh

Abstract. The method and results of lidar studies of spatiotemporal variability of wind turbulence in the atmospheric boundary layer are reported. The measurements were conducted by a Stream Line pulsed coherent Doppler lidar (PCDL) with the use of conical scanning by a probing beam around the vertical axis. Lidar data are used to estimate the kinetic energy of turbulence, turbulent energy dissipation rate, integral scale of turbulence, and momentum fluxes. The dissipation rate was determined from the azimuth structure function of radial velocity within the inertial subrange of turbulence. When estimating the kinetic energy of turbulence from lidar data, we took into account the averaging of radial velocity over the sensing volume. The integral scale of turbulence was determined on the assumption that the structure of random irregularities of the wind field is described by the von Kármán model. The domain of applicability of the used method and the accuracy of the estimation of turbulence parameters were determined. Turbulence parameters estimated from Stream Line lidar measurement data and from data of a sonic anemometer were compared.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1138
Author(s):  
Islam Abohela ◽  
Elsa Aristodemou ◽  
Abas Hadawey ◽  
Raveendran Sundararajan

One of the main factors affecting the reliability of computational fluid dynamics (CFD) simulations for the urban environment is the Horizontal Homogeneity of the Atmospheric Boundary Layer (HHABL) profile—meaning the vertical profiles of the mean streamwise velocity, the turbulent kinetic energy, and dissipation rate are maintained throughout the streamwise direction of the computational domain. This paper investigates the preservation of the HHABL profile using three different commercial CFD codes—the ANSYS Fluent, the ANSYS CFD, and the Siemens STAR-CCM+ software. Three different cases were considered, identified by their different inlet conditions for the inlet velocity, turbulent kinetic energy, and dissipation rate profiles. Simulations were carried out using the RANS k-ε turbulence model. Slight variations in the eddy viscosity models, as well as in the wall boundary conditions, were identified in the different software, with the standard wall function with roughness being implemented in the Fluent applications, the scalable wall function with roughness in the CFX applications, and the blended wall function option in the STAR-CCM+ simulations. There was a slight difference in the meshing approach in the three different software, with a prism-layer option in the STAR-CCM+ software, which allowed a finer mesh near the wall/ground boundary. The results show all three software are able to preserve the horizontal homogeneity of the ABL—less than 0.5% difference between the software—indicating very similar degrees of accuracy.


Author(s):  
Alexander Potekaev ◽  
Liudmila Shamanaeva ◽  
Valentina Kulagina

Spatiotemporal dynamics of the atmospheric kinetic energy and its components caused by the ordered and turbulent motions of air masses are estimated from minisodar measurements of three velocity vector components and their variances within the lowest 5&ndash;200 m layer of the atmosphere, with a particular emphasis on the turbulent kinetic energy. The layered structure of the total atmospheric kinetic energy has been established. From the diurnal hourly dynamics of the altitude profiles of the turbulent kinetic energy (TKE) retrieved from minisodar data, four layers are established by the character of the altitude TKE dependence, namely, the near-ground layer, the surface layer, the layer with a linear TKE increase, and the transitive layer above. In the first layer, the most significant changes of the ТКЕ were observed in the evening hours. In the second layer, no significant changes in the TKE values were observed. A linear increase in the TKE values with altitude was observed in the third layer. In the fourth layer, the TKE slightly increased with altitude and exhibited variations during the entire observation period. The altitudes of the upper boundaries of these layers depended on the time of day. The MKE values were much less than the corresponding TKE values, they did not exceed 50 m2/s2. From two to four MKE layers were distinguished based on the character of its altitude dependence. The two-layer structures were observed in the evening and at night (under conditions of the stable atmospheric boundary layer). In the morning and daytime, the four-layer MKE structures with intermediate layers of linear increase and subsequent decrease in the MKE values were observed. Our estimates demonstrated that the ТКЕ contribution to the total atmospheric kinetic energy considerably (by a factor of 2.5&ndash;3) exceeded the corresponding МКЕ contribution.


Sign in / Sign up

Export Citation Format

Share Document