scholarly journals A Patch-Based Light Convolutional Neural Network for Land-Cover Mapping Using Landsat-8 Images

2019 ◽  
Vol 11 (2) ◽  
pp. 114 ◽  
Author(s):  
Hunsoo Song ◽  
Yonghyun Kim ◽  
Yongil Kim

This study proposes a light convolutional neural network (LCNN) well-fitted for medium-resolution (30-m) land-cover classification. The LCNN attains high accuracy without overfitting, even with a small number of training samples, and has lower computational costs due to its much lighter design compared to typical convolutional neural networks for high-resolution or hyperspectral image classification tasks. The performance of the LCNN was compared to that of a deep convolutional neural network, support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF). SVM, KNN, and RF were tested with both patch-based and pixel-based systems. Three 30 km × 30 km test sites of the Level II National Land Cover Database were used for reference maps to embrace a wide range of land-cover types, and a single-date Landsat-8 image was used for each test site. To evaluate the performance of the LCNN according to the sample sizes, we varied the sample size to include 20, 40, 80, 160, and 320 samples per class. The proposed LCNN achieved the highest accuracy in 13 out of 15 cases (i.e., at three test sites with five different sample sizes), and the LCNN with a patch size of three produced the highest overall accuracy of 61.94% from 10 repetitions, followed by SVM (61.51%) and RF (61.15%) with a patch size of three. Also, the statistical significance of the differences between LCNN and the other classifiers was reported. Moreover, by introducing the heterogeneity value (from 0 to 8) representing the complexity of the map, we demonstrated the advantage of patch-based LCNN over pixel-based classifiers, particularly at moderately heterogeneous pixels (from 1 to 4), with respect to accuracy (LCNN is 5.5% and 6.3% more accurate for a training sample size of 20 and 320 samples per class, respectively). Finally, the computation times of the classifiers were calculated, and the LCNN was confirmed to have an advantage in large-area mapping.

2018 ◽  
Vol 10 (12) ◽  
pp. 2053 ◽  
Author(s):  
Yunfeng Hu ◽  
Qianli Zhang ◽  
Yunzhi Zhang ◽  
Huimin Yan

Land cover and its dynamic information is the basis for characterizing surface conditions, supporting land resource management and optimization, and assessing the impacts of climate change and human activities. In land cover information extraction, the traditional convolutional neural network (CNN) method has several problems, such as the inability to be applied to multispectral and hyperspectral satellite imagery, the weak generalization ability of the model and the difficulty of automating the construction of a training database. To solve these problems, this study proposes a new type of deep convolutional neural network based on Landsat-8 Operational Land Imager (OLI) imagery. The network integrates cascaded cross-channel parametric pooling and average pooling layer, applies a hierarchical sampling strategy to realize the automatic construction of the training dataset, determines the technical scheme of model-related parameters, and finally performs the automatic classification of remote sensing images. This study used the new type of deep convolutional neural network to extract land cover information from Qinhuangdao City, Hebei Province, and compared the experimental results with those obtained by traditional methods. The results show that: (1) The proposed deep convolutional neural network (DCNN) model can automatically construct the training dataset and classify images. This model performs the classification of multispectral and hyperspectral satellite images using deep neural networks, which improves the generalization ability of the model and simplifies the application of the model. (2) The proposed DCNN model provides the best classification results in the Qinhuangdao area. The overall accuracy of the land cover data obtained is 82.0%, and the kappa coefficient is 0.76. The overall accuracy is improved by 5% and 14% compared to the support vector machine method and the maximum likelihood classification method, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueying Li ◽  
Pingping Fan ◽  
Zongmin Li ◽  
Guangyuan Chen ◽  
Huimin Qiu ◽  
...  

Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.


2021 ◽  
Vol 13 (19) ◽  
pp. 3953
Author(s):  
Patrick Clifton Gray ◽  
Diego F. Chamorro ◽  
Justin T. Ridge ◽  
Hannah Rae Kerner ◽  
Emily A. Ury ◽  
...  

The ability to accurately classify land cover in periods before appropriate training and validation data exist is a critical step towards understanding subtle long-term impacts of climate change. These trends cannot be properly understood and distinguished from individual disturbance events or decadal cycles using only a decade or less of data. Understanding these long-term changes in low lying coastal areas, home to a huge proportion of the global population, is of particular importance. Relatively simple deep learning models that extract representative spatiotemporal patterns can lead to major improvements in temporal generalizability. To provide insight into major changes in low lying coastal areas, our study (1) developed a recurrent convolutional neural network that incorporates spectral, spatial, and temporal contexts for predicting land cover class, (2) evaluated this model across time and space and compared this model to conventional Random Forest and Support Vector Machine methods as well as other deep learning approaches, and (3) applied this model to classify land cover across 20 years of Landsat 5 data in the low-lying coastal plain of North Carolina, USA. We observed striking changes related to sea level rise that support evidence on a smaller scale of agricultural land and forests transitioning into wetlands and “ghost forests”. This work demonstrates that recurrent convolutional neural networks should be considered when a model is needed that can generalize across time and that they can help uncover important trends necessary for understanding and responding to climate change in vulnerable coastal regions.


2018 ◽  
Vol 10 (11) ◽  
pp. 1840 ◽  
Author(s):  
Meng Zhang ◽  
Hui Lin ◽  
Guangxing Wang ◽  
Hua Sun ◽  
Jing Fu

Rice is one of the world’s major staple foods, especially in China. Highly accurate monitoring on rice-producing land is, therefore, crucial for assessing food supplies and productivity. Recently, the deep-learning convolutional neural network (CNN) has achieved considerable success in remote-sensing data analysis. A CNN-based paddy-rice mapping method using the multitemporal Landsat 8, phenology data, and land-surface temperature (LST) was developed during this study. First, the spatial–temporal adaptive reflectance fusion model (STARFM) was used to blend the moderate-resolution imaging spectroradiometer (MODIS) and Landsat data for obtaining multitemporal Landsat-like data. Subsequently, the threshold method is applied to derive the phenological variables from the Landsat-like (Normalized difference vegetation index) NDVI time series. Then, a generalized single-channel algorithm was employed to derive LST from the Landsat 8. Finally, multitemporal Landsat 8 spectral images, combined with phenology and LST data, were employed to extract paddy-rice information using a patch-based deep-learning CNN algorithm. The results show that the proposed method achieved an overall accuracy of 97.06% and a Kappa coefficient of 0.91, which are 6.43% and 0.07 higher than that of the support vector machine method, and 7.68% and 0.09 higher than that of the random forest method, respectively. Moreover, the Landsat-derived rice area is strongly correlated (R2 = 0.9945) with government statistical data, demonstrating that the proposed method has potential in large-scale paddy-rice mapping using moderate spatial resolution images.


2020 ◽  
Vol 12 (7) ◽  
pp. 1097
Author(s):  
Junghee Lee ◽  
Daehyeon Han ◽  
Minso Shin ◽  
Jungho Im ◽  
Junghye Lee ◽  
...  

This study compares some different types of spectral domain transformations for convolutional neural network (CNN)-based land cover classification. A novel approach was proposed, which transforms one-dimensional (1-D) spectral vectors into two-dimensional (2-D) features: Polygon graph images (CNN-Polygon) and 2-D matrices (CNN-Matrix). The motivations of this study are that (1) the shape of the converted 2-D images is more intuitive for human eyes to interpret when compared to 1-D spectral input; and (2) CNNs are highly specialized and may be able to similarly utilize this information for land cover classification. Four seasonal Landsat 8 images over three study areas—Lake Tapps, Washington, Concord, New Hampshire, USA, and Gwangju, Korea—were used to evaluate the proposed approach for nine land cover classes compared to several other methods: Random forest (RF), support vector machine (SVM), 1-D CNN, and patch-based CNN. Oversampling and undersampling approaches were conducted to examine the effect of the sample size on the model performance. The CNN-Polygon had better performance than the other methods, with overall accuracies of about 93%–95 % for both Concord and Lake Tapps and 80%–84% for Gwangju. The CNN-Polygon particularly performed well when the training sample size was small, less than 200 per class, while the CNN-Matrix resulted in similar or higher performance as sample sizes became larger. The contributing input variables to the models were carefully analyzed through sensitivity analysis based on occlusion maps and accuracy decreases. Our result showed that a more visually intuitive representation of input features for CNN-based classification models yielded higher performance, especially when the training sample size was small. This implies that the proposed graph-based CNNs would be useful for land cover classification where reference data are limited.


2020 ◽  
Vol 12 (14) ◽  
pp. 2292
Author(s):  
Xin Luo ◽  
Xiaohua Tong ◽  
Zhongwen Hu ◽  
Guofeng Wu

Moderate spatial resolution (MSR) satellite images, which hold a trade-off among radiometric, spectral, spatial and temporal characteristics, are extremely popular data for acquiring land cover information. However, the low accuracy of existing classification methods for MSR images is still a fundamental issue restricting their capability in urban land cover mapping. In this study, we proposed a hybrid convolutional neural network (H-ConvNet) for improving urban land cover mapping with MSR Sentinel-2 images. The H-ConvNet was structured with two streams: one lightweight 1D ConvNet for deep spectral feature extraction and one lightweight 2D ConvNet for deep context feature extraction. To obtain a well-trained 2D ConvNet, a training sample expansion strategy was introduced to assist context feature learning. The H-ConvNet was tested in six highly heterogeneous urban regions around the world, and it was compared with support vector machine (SVM), object-based image analysis (OBIA), Markov random field model (MRF) and a newly proposed patch-based ConvNet system. The results showed that the H-ConvNet performed best. We hope that the proposed H-ConvNet would benefit for the land cover mapping with MSR images in highly heterogeneous urban regions.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3608
Author(s):  
Chiao-Sheng Wang ◽  
I-Hsi Kao ◽  
Jau-Woei Perng

The early diagnosis of a motor is important. Many researchers have used deep learning to diagnose motor applications. This paper proposes a one-dimensional convolutional neural network for the diagnosis of permanent magnet synchronous motors. The one-dimensional convolutional neural network model is weakly supervised and consists of multiple convolutional feature-extraction modules. Through the analysis of the torque and current signals of the motors, the motors can be diagnosed under a wide range of speeds, variable loads, and eccentricity effects. The advantage of the proposed method is that the feature-extraction modules can extract multiscale features from complex conditions. The number of training parameters was reduced so as to solve the overfitting problem. Furthermore, the class feature map was proposed to automatically determine the frequency component that contributes to the classification using the weak learning method. The experimental results reveal that the proposed model can effectively diagnose three different motor states—healthy state, demagnetization fault state, and bearing fault state. In addition, the model can detect eccentric effects. By combining the current and torque features, the classification accuracy of the proposed model is up to 98.85%, which is higher than that of classical machine-learning methods such as the k-nearest neighbor and support vector machine.


2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Adam Adli ◽  
Pascal Tyrrell

Introduction: Advances in computers have allowed for the practical application of increasingly advanced machine learning models to aid healthcare providers with diagnosis and inspection of medical images. Often, a lack of training data and computation time can be a limiting factor in the development of an accurate machine learning model in the domain of medical imaging. As a possible solution, this study investigated whether L2 regularization moderate s the overfitting that occurs as a result of small training sample sizes.Methods: This study employed transfer learning experiments on a dental x-ray binary classification model to explore L2 regularization with respect to training sample size in five common convolutional neural network architectures. Model testing performance was investigated and technical implementation details including computation times and hardware considerations as well as performance factors and practical feasibility were described.Results: The experimental results showed a trend that smaller training sample sizes benefitted more from regularization than larger training sample sizes. Further, the results showed that applying L2 regularization did not apply significant computational overhead and that the extra rounds of training L2 regularization were feasible when training sample sizes are relatively small.Conclusion: Overall, this study found that there is a window of opportunity in which the benefits of employing regularization can be most cost-effective relative to training sample size. It is recommended that training sample size should be carefully considered when forming expectations of achievable generalizability improvements that result from investing computational resources into model regularization.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Feifei Hou ◽  
Wentai Lei ◽  
Hong Li ◽  
Jingchun Xi

Convolutional Neural Network- (CNN-) based land cover classification algorithms have recently been applied in hyperspectral images (HSI) field. However, the large-scale training parameters bring huge computation burden to CNN and the spatial variability of spectral signatures leads to relative low classification accuracy. In this paper, we propose a CNN-based classification framework that extracts square matrix representation-based spectral-spatial features and performs land cover classification. Numerical results on popular datasets show that our framework outperforms sparsity-based approaches like basic thresholding classifier-weighted least squares (BTC-WLS) and other deep learning-based methods in terms of both classification accuracy and computational cost.


Sign in / Sign up

Export Citation Format

Share Document