scholarly journals Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated with Photosynthesis at Leaf and Canopy Scales

2019 ◽  
Vol 11 (5) ◽  
pp. 488 ◽  
Author(s):  
Petya Campbell ◽  
Karl Huemmrich ◽  
Elizabeth Middleton ◽  
Lauren Ward ◽  
Tommaso Julitta ◽  
...  

There is a critical need for sensitive remote sensing approaches to monitor the parameters governing photosynthesis, at the temporal scales relevant to their natural dynamics. The photochemical reflectance index (PRI) and chlorophyll fluorescence (F) offer a strong potential for monitoring photosynthesis at local, regional, and global scales, however the relationships between photosynthesis and solar induced F (SIF) on diurnal and seasonal scales are not fully understood. This study examines how the fine spatial and temporal scale SIF observations relate to leaf level chlorophyll fluorescence metrics (i.e., PSII yield, YII and electron transport rate, ETR), canopy gross primary productivity (GPP), and PRI. The results contribute to enhancing the understanding of how SIF can be used to monitor canopy photosynthesis. This effort captured the seasonal and diurnal variation in GPP, reflectance, F, and SIF in the O2A (SIFA) and O2B (SIFB) atmospheric bands for corn (Zea mays L.) at a study site in Greenbelt, MD. Positive linear relationships of SIF to canopy GPP and to leaf ETR were documented, corroborating published reports. Our findings demonstrate that canopy SIF metrics are able to capture the dynamics in photosynthesis at both leaf and canopy levels, and show that the relationship between GPP and SIF metrics differs depending on the light conditions (i.e., above or below saturation level for photosynthesis). The sum of SIFA and SIFB (SIFA+B), as well as the SIFA+B yield, captured the dynamics in GPP and light use efficiency, suggesting the importance of including SIFB in monitoring photosynthetic function. Further efforts are required to determine if these findings will scale successfully to airborne and satellite levels, and to document the effects of data uncertainties on the scaling.

2020 ◽  
Vol 12 (9) ◽  
pp. 1518
Author(s):  
Leizhen Liu ◽  
Wenhui Zhao ◽  
Qiu Shen ◽  
Jianjun Wu ◽  
Yanguo Teng ◽  
...  

It has been demonstrated that solar-induced chlorophyll fluorescence (SIF) is linearly related to the primary production of photosynthesis (GPP) in various ecosystems. However, it is unknown whether such linear relationships have been established in senescent crops. SIF and GPP can be expressed as the products of absorbed photosynthetically active radiation (APAR) with the SIF yield and photosystem II (PSII) operating efficiency, respectively. Thus, the relationship between SIF and GPP can be represented by the relationship between the SIF yield and PSII operating efficiency when the APAR has the same value. Therefore, we analyzed the relationship between the SIF yield and the PSII operating efficiency to address the abovementioned question. Here, diurnal measurements of the canopy SIF (760 nm, F760) of soybean and sweet potato were manually measured and used to calculate the SIF yield. The PSII operating efficiency was calculated from measurements of the chlorophyll fluorescence at the leaf level using the FluorImager chlorophyll fluorescence imaging system. Meanwhile, field measurements of the gas exchange and other physiological parameters were also performed using commercial-grade devices. The results showed that the SIF yield was not linearly related to the PSII operating efficiency at the diurnal scale, reflecting the nonlinear relationship between SIF and GPP. This nonlinear relationship mainly resulted from the heterogeneity and diurnal dynamics of the PSII operating efficiency and from the intrinsic diurnal changes in the maximum efficiency of the PSII photochemistry and the proportion of opened PSII centers. Intensifying respiration was another factor that complicated the response of photosynthesis to the variation in environmental conditions and negatively impacted the relationship between the SIF yield and the PSII operating efficiency. The nonlinear relationship between the SIF yield and PSII efficiency might yield errors in the estimation of GPP using the SIF measurements of senescent crops.


Author(s):  
Richard Culliford ◽  
Alex J. Cornish ◽  
Philip J. Law ◽  
Susan M. Farrington ◽  
Kimmo Palin ◽  
...  

Abstract Background Epidemiological studies of the relationship between gallstone disease and circulating levels of bilirubin with risk of developing colorectal cancer (CRC) have been inconsistent. To address possible confounding and reverse causation, we examine the relationship between these potential risk factors and CRC using Mendelian randomisation (MR). Methods We used two-sample MR to examine the relationship between genetic liability to gallstone disease and circulating levels of bilirubin with CRC in 26,397 patients and 41,481 controls. We calculated the odds ratio per genetically predicted SD unit increase in log bilirubin levels (ORSD) for CRC and tested for a non-zero causal effect of gallstones on CRC. Sensitivity analysis was applied to identify violations of estimator assumptions. Results No association between either gallstone disease (P value = 0.60) or circulating levels of bilirubin (ORSD = 1.00, 95% confidence interval (CI) = 0.96–1.03, P value = 0.90) with CRC was shown. Conclusions Despite the large scale of this study, we found no evidence for a causal relationship between either circulating levels of bilirubin or gallstone disease with risk of developing CRC. While the magnitude of effect suggested by some observational studies can confidently be excluded, we cannot exclude the possibility of smaller effect sizes and non-linear relationships.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 313
Author(s):  
Guoqiang Zhang ◽  
Bo Ming ◽  
Dongping Shen ◽  
Ruizhi Xie ◽  
Peng Hou ◽  
...  

Achieving optimal balance between maize yield and water use efficiency is an important challenge for irrigation maize production in arid areas. In this study, we conducted an experiment in Xinjiang China in 2016 and 2017 to quantify the response of maize yield and water use to plant density and irrigation schedules. The treatments included four irrigation levels: 360 (W1), 480 (W2), 600 (W3), and 720 mm (W4), and five plant densities: 7.5 (D1), 9.0 (D2), 10.5 (D3), 12.0 (D4), and 13.5 plants m−2 (D5). The results showed that increasing the plant density and the irrigation level could both significantly increase the leaf area index (LAI). However, LAI expansion significantly increased evapotranspiration (ETa) under irrigation. The combination of irrigation level 600 mm (W3) and plant density 12.0 plants m−2 (D4) produced the highest maize yield (21.0–21.2 t ha−1), ETa (784.1–797.8 mm), and water use efficiency (WUE) (2.64–2.70 kg m−3), with an LAI of 8.5–8.7 at the silking stage. The relationship between LAI and grain yield and evapotranspiration were quantified, and, based on this, the relationship between water use and maize productivity was analyzed. Moreover, the optimal LAI was established to determine the reasonable irrigation level and coordinate the relationship between the increase in grain yield and the decrease in water use efficiency.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 619
Author(s):  
Lirong Cao ◽  
Shi Zhao ◽  
Jingzhi Lou ◽  
Hong Zheng ◽  
Renee W. Y. Chan ◽  
...  

Assessment of influenza vaccine effectiveness (VE) and identification of relevant influencing factors are the current priorities for optimizing vaccines to reduce the impacts of influenza. To date, how the difference between epidemic strains and vaccine strains at genetic scale affects age-specific vaccine performance remains ambiguous. This study investigated the association between genetic mismatch on hemagglutinin and neuraminidase genes and A(H1N1)pdm09 VE in different age groups with a novel computational approach. We found significant linear relationships between VE and genetic mismatch in children, young adults, and middle-aged adults. In the children’s group, each 3-key amino acid mutation was associated with an average of 10% decrease in vaccine effectiveness in a given epidemic season, and genetic mismatch exerted no influence on VE for the elderly group. We demonstrated that present vaccines were most effective for children, while protection for the elderly was reduced and indifferent to vaccine component updates. Modeling such relationships is practical to inform timely evaluation of VE in different groups of populations during mass vaccination and may inform age-specific vaccination regimens.


Biochemistry ◽  
1998 ◽  
Vol 37 (33) ◽  
pp. 11586-11591 ◽  
Author(s):  
Alexander V. Ruban ◽  
Paolo Pesaresi ◽  
Ulrich Wacker ◽  
Klaus-Dieter J. Irrgang ◽  
Roberto Bassi ◽  
...  

Oecologia ◽  
2021 ◽  
Author(s):  
Jessie Mutz ◽  
Ryan McClory ◽  
Laura J. A. van Dijk ◽  
Johan Ehrlén ◽  
Ayco J. M. Tack

Sign in / Sign up

Export Citation Format

Share Document