scholarly journals Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity

2019 ◽  
Vol 11 (11) ◽  
pp. 1303 ◽  
Author(s):  
Shangrong Lin ◽  
Jing Li ◽  
Qinhuo Liu ◽  
Longhui Li ◽  
Jing Zhao ◽  
...  

Gross primary productivity (GPP) is the most important component of terrestrial carbon flux. Red-edge (680–780 nm) reflectance is sensitive to leaf chlorophyll content, which is directly correlated with photosynthesis as the pigment pool, and it has the potential to improve GPP estimation. The European Space Agency (ESA) Sentinel-2A and B satellites provide red-edge bands at 20-m spatial resolution on a five-day revisit period, which can be used for global estimation of GPP. Previous studies focused mostly on improving cropland GPP estimation using red-edge bands. In this study, we firstly evaluated the relationship between eight vegetation indices (VIs) retrieved from Sentinel-2 imagery in association with incident photosynthetic active radiation (PARin) and carbon flux tower GPP (GPPEC) across three forest and two grassland sites in Australia. We derived a time series of five red-edge VIs and three non-red-edge VIs over the CO2 flux tower footprints at 16-day time intervals and compared both temporal and spatial variations. The results showed that the relationship between the red-edge index (CIr, ρ 783 ρ 705 − 1 ) multiplied by PARin and GPPEC had the highest correlation (R2 = 0.77, root-mean-square error (RMSE) = 0.81 gC∙m−2∙day−1) at the two grassland sites. The CIr also showed consistency (rRMSE defined as RMSE/mean GPP, lower than 0.25) across forest and grassland sites. The high spatial resolution of the Sentinel-2 data provided more detailed information to adequately characterize the GPP variance at spatially heterogeneous areas. The high revisit period of Sentinel-2 exhibited temporal variance in GPP at the grassland sites; however, at forest sites, the flux-tower-based GPP variance could not be fully tracked by the limited satellite images. These results suggest that the high-spatial-resolution red-edge index from Sentinel-2 can improve large-scale spatio-temporal GPP assessments.

2020 ◽  
Vol 12 (13) ◽  
pp. 2104
Author(s):  
Maral Maleki ◽  
Nicola Arriga ◽  
José Miguel Barrios ◽  
Sebastian Wieneke ◽  
Qiang Liu ◽  
...  

This study aimed to understand which vegetation indices (VIs) are an ideal proxy for describing phenology and interannual variability of Gross Primary Productivity (GPP) in short-rotation coppice (SRC) plantations. Canopy structure- and chlorophyll-sensitive VIs derived from Sentinel-2 images were used to estimate the start and end of the growing season (SOS and EOS, respectively) during the period 2016–2018, for an SRC poplar (Populus spp.) plantation in Lochristi (Belgium). Three different filtering methods (Savitzky–Golay (SavGol), polynomial (Polyfit) and Harmonic Analysis of Time Series (HANTS)) and five SOS- and EOS threshold methods (first derivative function, 10% and 20% percentages and 10% and 20% percentiles) were applied to identify the optimal methods for the determination of phenophases. Our results showed that the MEdium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI) had the best fit with GPP phenology, as derived from eddy covariance measurements, in identifying SOS- and EOS-dates. For SOS, the performance was only slightly better than for several other indices, whereas for EOS, MTCI performed markedly better. The relationship between SOS/EOS derived from GPP and VIs varied interannually. MTCI described best the seasonal pattern of the SRC plantation’s GPP (R2 = 0.52 when combining all three years). However, during the extreme dry year 2018, the Chlorophyll Red Edge Index performed slightly better in reproducing growing season GPP variability than MTCI (R2 = 0.59; R2 = 0.49, respectively). Regarding smoothing functions, Polyfit and HANTS methods showed the best (and very similar) performances. We further found that defining SOS as the date at which the 10% or 20% percentile occurred, yielded the best agreement between the VIs and the GPP; while for EOS the dates of the 10% percentile threshold came out as the best.


2018 ◽  
Vol 21 (5) ◽  
pp. 831-850 ◽  
Author(s):  
David L. Miller ◽  
Dar A. Roberts ◽  
Keith C. Clarke ◽  
Yang Lin ◽  
Olaf Menzer ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 469
Author(s):  
Zhanzhang Cai ◽  
Sofia Junttila ◽  
Jutta Holst ◽  
Hongxiao Jin ◽  
Jonas Ardö ◽  
...  

The high-resolution Sentinel-2 data potentially enable the estimation of gross primary productivity (GPP) at finer spatial resolution by better capturing the spatial variation in a heterogeneous landscapes. This study investigates the potential of 10 m resolution reflectance from the Sentinel-2 Multispectral Instrument to improve the accuracy of GPP estimation across Nordic vegetation types, compared with the 250 m and 500 m resolution reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We applied linear regression models with inputs of two-band enhanced vegetation index (EVI2) derived from Sentinel-2 and MODIS reflectance, respectively, together with various environmental drivers to estimate daily GPP at eight Nordic eddy covariance (EC) flux tower sites. Compared with the GPP from EC measurements, the accuracies of modelled GPP were generally high (R2 = 0.84 for Sentinel-2; R2 = 0.83 for MODIS), and the differences between Sentinel-2 and MODIS were minimal. This demonstrates the general consistency in GPP estimates based on the two satellite sensor systems at the Nordic regional scale. On the other hand, the model accuracy did not improve by using the higher spatial-resolution Sentinel-2 data. More analyses of different model formulations, more tests of remotely sensed indices and biophysical parameters, and analyses across a wider range of geographical locations and times will be required to achieve improved GPP estimations from Sentinel-2 satellite data.


Author(s):  
P. Ghosh ◽  
D. Mandal ◽  
A. Bhattacharya ◽  
M. K. Nanda ◽  
S. Bera

<p><strong>Abstract.</strong> Spatio-temporal variability of crop growth descriptors is of prime importance for crop risk assessment and yield gap analysis. The incorporation of three bands (viz., B5, B6, B7) in ‘red-edge’ position (i.e., 705<span class="thinspace"></span>nm, 740<span class="thinspace"></span>nm, 783<span class="thinspace"></span>nm) in Sentinel-2 with 10&amp;ndash;20<span class="thinspace"></span>m spatial resolution images with five days revisit period have unfolded opportunity for meticulous crop monitoring. In the present study, the potential of Sentinel-2 have been appraised for monitoring phenological stages of potato over Bardhaman district in the state of West Bengal, India. Due to the competency of Vegetation indices (VI) to evaluate the status of crop growth; we have used the Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Index45 (NDI45) for crop monitoring. Time series analysis of the VIs exhibited increasing trend as the crop started approaching maturity and attained a maximum value during the tuber development stage and started decreasing as the crop advances to senescence. Inter-field variability of VIs highlighted the need of crop monitoring at high spatial resolution. Among the three vegetation indices, the GNDVI (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.636), NDVI (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.620) had the highest correlation with biomass and Plant Area Index (PAI), respectively. NDI45 had comparatively a lower correlation (<i>r</i><span class="thinspace"></span>=<span class="thinspace"></span>0.572 and 0.585 for PAI and biomass, respectively) with both parameters as compared to other two indices. It is interesting to note that the use of Sentinel-2 Green band (B3) instead of the Red band (B4) in GNDVI resulted in 2.5% increase of correlation with biomass. However, the improvement in correlations between NDI45 with crop biophysical parameters is not apparent in this particular study with the inclusion of the Vegetation Red Edge band (B5) in VI. Nevertheless, the strong correlation of VIs with biomass and PAI asserted proficiency of Sentinel-2 for crop monitoring and potential for crop biophysical parameter retrieval with optimum accuracy.</p>


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabelo Nick Dlamini ◽  
Jonas Franke ◽  
Penelope Vounatsou

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.


2017 ◽  
Vol 35 (1) ◽  
pp. 82-91
Author(s):  
Cesar Edwin García ◽  
David Montero ◽  
Hector Alberto Chica

The main objective of the research carried out in the sugar productive sector in Colombia is to improve crop productivity of sugarcane. The rise of RPAS, together with the use of multispectral cameras, which allows for high spatial resolution images and spectral information outside the visible spectrum, has generated an alternative nondestructive technological approach to monitoring crop sugarcane that must be evaluated and adapted to the specific conditions of Colombia's sugar productive sector. In this context, this paper assesses the potential of a modified camera (NIR) to discriminate three varieties of sugarcane, as well as three doses of fertilization and estimating the sugarcane yield at an early stage, for the three varieties through multiple vegetation indices. In this study, no significant differences were found by vegetation index between fertilization doses, and only significant differences between varieties were found when the fertilization was normal or high. Likewise, multiple regressions between scores derived from vegetation indices after applying PCA and productivity produced determinations of up to 56%.


2020 ◽  
Vol 58 (2) ◽  
pp. 826-840 ◽  
Author(s):  
Yuanheng Sun ◽  
Qiming Qin ◽  
Huazhong Ren ◽  
Tianyuan Zhang ◽  
Shanshan Chen

Sign in / Sign up

Export Citation Format

Share Document