scholarly journals Characteristics of BD3 Global Service Satellites: POD, Open Service Signal and Atomic Clock Performance

2019 ◽  
Vol 11 (13) ◽  
pp. 1559 ◽  
Author(s):  
Xiaolong Xu ◽  
Xilong Wang ◽  
Jingnan Liu ◽  
Qile Zhao

The Chinese BeiDou Navigation Satellite System has provided a global-coverage service since 27 December 2018. Eighteen BD3 MEO satellites have been launched into space during 2017 and 2018. The signal constitution has been redesigned and four open service signals are used for transmission, including B1I, B1C, B2a and B3I. This paper focuses on the signal performance, Precise Orbit Determination (POD) and the atomic clock’s frequency stability issues of the BD3 satellites. The satellite-induced code bias issue found in BD2 satellites multipath combination has been proven to be eliminated in BD3 satellites. However, the pseudorange code of B1C is much noisier than that of other three frequencies, which may be related to the signal constitution and power distribution, as the minimum received power levels on the ground of B1C is 3 dB lower than that of the B2a signal. Similar results were achieved by the Ionosphere-Free combination residuals in POD using four signals, B1I-B3I, B1I-B2a, B1C-B3I and B1C-B2a, and the phase residual of B1C-B2a combination performed best. Considering the noise amplitude and compatibility with other GNSS (Global Navigation Satellite System), the B1C-B2a combination is recommended in priority for precise GNSS data processing. GFIFP combinations were also implemented to evaluate the inter-frequency phase bias of the four signals. The experimental results showed that the systematic signal with an amplitude of about 2 cm could be found in the GFIFP series. In addition, multi-GNSS POD was performed and analyzed as well, using about a hundred global-distributed IGS and iGMAS stations. Furthermore, the atomic clock’s frequency stability was estimated using the parameters of clock bias calculated in POD and the Overlap Allan Deviations showed that the frequency stability of BD3 reached approximately 2.43 × 10−14 at intervals of 10,000 s and 2.51 × 10−15 at intervals of 86,400 s, which was better than that of the GPS BLOCK IIF satellites but worse than that of Galileo satellites.

2019 ◽  
Vol 11 (7) ◽  
pp. 787 ◽  
Author(s):  
Jing Qiao ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Duojie Weng

The geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of the Beidou navigation satellite system are maneuvered frequently. The broadcast ephemeris can be interrupted for several hours after the maneuver. The orbit-only signal-in-space ranging errors (SISREs) of broadcast ephemerides available after the interruption are over two times larger than the errors during normal periods. To shorten the interruption period and improve the ephemeris accuracy, we propose a two-step orbit recovery strategy based on a piecewise linear thrust model. The turning points of the thrust model are firstly determined by comparison of the kinematic orbit with an integrated orbit free from maneuver; afterward, precise orbit determination (POD) is conducted for the maneuvered satellite by estimating satellite orbital and thrust parameters simultaneously. The observations from the IGS Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) network and ultra-rapid products of the German Research Center for Geosciences (GFZ) are used for orbit determination of maneuvered satellites from Sep to Nov 2017. The results show that for the rapidly recovered ephemerides, the average orbit-only SISREs are 1.15 and 1.0 m 1 h after maneuvering for GEO and IGSO respectively, which is comparable to the accuracy of Beidou broadcast ephemerides in normal cases.


2019 ◽  
Vol 11 (16) ◽  
pp. 1949 ◽  
Author(s):  
Xiaolei Dai ◽  
Yidong Lou ◽  
Zhiqiang Dai ◽  
Caibo Hu ◽  
Yaquan Peng ◽  
...  

Precise orbit products are essential and a prerequisite for global navigation satellite system (GNSS) applications, which, however, are unavailable or unusable when satellites are undertaking maneuvers. We propose a clock-constrained reverse precise point positioning (RPPP) method to generate the rather precise orbits for GNSS maneuvering satellites. In this method, the precise clock estimates generated by the dynamic precise orbit determination (POD) processing before maneuvering are modeled and predicted to the maneuvering periods and they constrain the RPPP POD during maneuvering. The prediction model is developed according to different clock types, of which the 2-h prediction error is 0.31 ns and 1.07 ns for global positioning system (GPS) Rubidium (Rb) and Cesium (Cs) clocks, and 0.45 ns and 0.60 ns for the Beidou navigation satellite system (BDS) geostationary orbit (GEO) and inclined geosynchronous orbit (IGSO)/Median Earth orbit (MEO) satellite clocks, respectively. The performance of this proposed method is first evaluated using the normal observations without maneuvers. Experiment results show that, without clock-constraint, the average root mean square (RMS) of RPPP orbit solutions in the radial, cross-track and along-track directions is 69.3 cm, 5.4 cm and 5.7 cm for GPS satellites and 153.9 cm, 12.8 cm and 10.0 cm for BDS satellites. When the constraint of predicted satellite clocks is introduced, the average RMS is dramatically reduced in the radial direction by a factor of 7–11, with the value of 9.7 cm and 13.4 cm for GPS and BDS satellites. At last, the proposed method is further tested on the actual GPS and BDS maneuver events. The clock-constrained RPPP POD solution is compared to the forward and backward integration orbits of the dynamic POD solution. The resulting orbit differences are less than 20 cm in all three directions for GPS satellite, and less than 30 cm in the radial and cross-track directions and up to 100 cm in the along-track direction for BDS satellites. From the orbit differences, the maneuver start and end time is detected, which reveals that the maneuver duration of GPS satellites is less than 2 min, and the maneuver events last from 22.5 min to 107 min for different BDS satellites.


2021 ◽  
Vol 30 (3) ◽  
pp. 2-7
Author(s):  
Myoung-Sun HEO ◽  
Dai-Hyuk YU ◽  
Won-Kyu LEE

Frequencies have been the most accurately measured physical quantity since the second was defined in 1967 based on the microwave atomic transition of a Cs atom. Recently, atomic clocks using optical frequency transitions have shown an order of magnitude better accuracy than microwave clocks. Thanks to their high accuracy and resolution, atomic clocks have become a new tool for investigations involving fundamental science and technology, such as the search for dark matter, gravitational wave detection, the temporal variation of fundamental constants, relativistic geodesy, quantum metrology, and the advanced Global Navigation Satellite System (GNSS). In addition, a redefinition of the second based on the optical frequency is expected. In this paper, we review the principles and applications of optical clocks.


Author(s):  
Adam Ciećko ◽  
Grzegorz Grunwald

The Global Navigation Satellite System (GNSS) is increasinglyused in navigation and positioning in land, water and air applications.Although they are very useful and willingly employedin everyday live and commercial products, it must be stressedthat GNSS alone does not always provide adequate performance,particularly in demanding aeronautical applicationswhere high level of integrity is required. Integrity and accuracyof positioning are the key parameters in air navigation.The paper presents research on current values of GNSS accuracyand integrity in north-eastern Poland, the region whichuntil 2014 was out of official coverage of European GeostationaryNavigation Overlay Service (EGNOS) Open Service (OS).The integrity and accuracy of positioning of static point andflying aircraft was examined in order to check present usabilityof different GNSS techniques which can be deployed for enroute,approach and landing phase of a flight. Since the integritylevels in aviation are strictly dependent on the phase offlight and landing of an aircraft, the analyses were performedin two computational modes: positioning using GPS/EGNOSdata and using autonomous GPS. Both modes were calculatedin en-route variant and because with the use of EGNOS it ispossible to perform approach, GPS/EGNOS mode was alsoanalyzed in Precision Approach (PA) variant. Overall assessmentof the accuracy and integrity of positioning in the studiedvariants is at the satisfactory level, not exceeding the levelsdefined by official aviation regulations. 


2019 ◽  
Vol 11 (21) ◽  
pp. 2587
Author(s):  
Qin ◽  
Huang ◽  
Zhang ◽  
Wang ◽  
Yan ◽  
...  

In order to provide better service for the Asia-Pacific region, the BeiDou navigation satellite system (BDS) is designed as a constellation containing medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). However, the multi-orbit configuration brings great challenges for orbit determination. When orbit maneuvering, the orbital elements of the maneuvered satellites from broadcast ephemeris are unusable for several hours, which makes it difficult to estimate the initial orbit in the process of precise orbit determination. In addition, the maneuvered force information is unknown, which brings systematic orbit integral errors. In order to avoid these errors, observation data are removed from the iterative adjustment. For the above reasons, the precise orbit products of maneuvered satellites are missing from IGS (international GNSS (Global Navigation Satellite System) service) and iGMAS (international GNSS monitoring and assessment system). This study proposes a method to determine the precise orbits of maneuvered satellites for BeiDou GEO and IGSO. The initial orbits of maneuvered satellites could be backward forecasted according to the precise orbit products. The systematic errors caused by unmodeled maneuvered force are absorbed by estimated pseudo-stochastic pulses. The proposed method for determining the precise orbits of maneuvered satellites is validated by analyzing data of stations from the Multi-GNSS Experiment (MGEX). The results show that the precise orbits of maneuvered satellites can be estimated correctly when orbit maneuvering, which could supplement the precise products from the analysis centers of IGS and iGMAS. It can significantly improve the integrality and continuity of the precise products and subsequently provide better precise products for users.


2019 ◽  
Vol 72 (06) ◽  
pp. 1533-1549
Author(s):  
X.M. Huang ◽  
X. Zhao ◽  
J.Y. Li ◽  
X.W. Zhu ◽  
G. Ou

An algorithm for Global Navigation Satellite System satellite atomic clock integrity monitoring based on an extended measurement model is proposed. A detection statistic achieved by parity transformation is used to detect clock anomalies, and the concept of the optimal accumulation number, with a method to find it, is provided. Numerical simulations are adopted to verify the validity of detecting two typical anomalies.


2020 ◽  
Author(s):  
Hanbing Peng ◽  
Maorong Ge ◽  
Yuanxi Yang ◽  
Harald Schuh ◽  
Roman Galas

<p>Since November 2017, the 3rd generation BeiDou Navigation Satellite System (BDS-3) of China has stepped into an intensive build-up phase. Up to the end of 2019, there are 5 experimental and 28 operational BDS-3 satellites in the space. Besides that, 16 BDS-2 legacy satellites are still providing Positioning, Navigation and Timing (PNT) service for Asia-Pacific users. Unlike BDS-2 satellites, BDS-3 satellites will not transmit signal on frequency B2I which is one of the open service frequencies of BDS-2 and will be replaced by B2a of BDS-3. For legacy signals, only that on B1I and B3I will be transmitted by all BDS-3 satellites. Therefore, current routine scheme that generates precise orbit and clock products with B1I+B2I combination observations becomes infeasible for BDS-3. Observation combination used for product generation of BDS-2 could be switched to B1I+B3I combination as well. However, this might cause discontinuity in BDS-2 products as different hardware delays specific to signals are contained in them. In this study, combined processing of BDS-2 and BDS-3 satellites to generate consistent precise orbit and clock products is researched. To elaborate the impact of observation biases between BDS-2 and BDS-3, different combined Precise Orbit Determination (POD) processing schemes are examined. It shows that receiver biases between BDS-2 and BDS-3 should be considered in combined POD which is clear from the post-fit residuals of observations, especially from that of BDS-3 code observations. After estimating those biases between B1I+B2I of BDS-2 and B1I+B3I of BDS-3, Root-Mean-Square (RMS) of BDS-3 code observations decreases from 5.07 to 1.23 m. The results show that, biases of B1I+B3I between BDS-2 and BDS-3 are relatively small, less than 4 m for most receivers and around 1.2 m on average. But their estimates are stable with standard deviations (STDs) of 0.13 ~ 0.34 m depending on receiver types. Influences of these biases on the POD results are limited. However, biases between B1I+B2I of BDS-2 and B1I+B3I of BDS-3 are more significant, from -10 to 30 m for different receivers. Except for Septentrio receivers, quantities of those biases are basically related to the receiver types. Averages of biases from Trimble, JAVAD and Leica receivers are 18.5, 5.0 and 10.0 m, respectively. Those biases are also estimated with very small STDs, which ranges from 0.13 to 0.28 m. It is demonstrated that those receiver biases should be properly handle in combined POD processing of BDS-2 and BDS-3 satellites. As B1I+B2I is more appropriate for BDS-2, using different observation combinations for BDS-2 and BDS-3 in combined POD processing is more preferred over the scheme in which B1I+B3I is used for both BDS-2 and BDS-3.</p>


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jin Wang ◽  
Qin Zhang ◽  
Guanwen Huang

AbstractThe Fractional Cycle Bias (FCB) product is crucial for the Ambiguity Resolution (AR) in Precise Point Positioning (PPP). Different from the traditional method using the ionospheric-free ambiguity which is formed by the Wide Lane (WL) and Narrow Lane (NL) combinations, the uncombined PPP model is flexible and effective to generate the FCB products. This study presents the FCB estimation method based on the multi-Global Navigation Satellite System (GNSS) precise satellite orbit and clock corrections from the international GNSS Monitoring and Assessment System (iGMAS) observations using the uncombined PPP model. The dual-frequency raw ambiguities are combined by the integer coefficients (4,− 3) and (1,− 1) to directly estimate the FCBs. The details of FCB estimation are described with the Global Positioning System (GPS), BeiDou-2 Navigation Satellite System (BDS-2) and Galileo Navigation Satellite System (Galileo). For the estimated FCBs, the Root Mean Squares (RMSs) of the posterior residuals are smaller than 0.1 cycles, which indicates a high consistency for the float ambiguities. The stability of the WL FCBs series is better than 0.02 cycles for the three GNSS systems, while the STandard Deviation (STD) of the NL FCBs for BDS-2 is larger than 0.139 cycles. The combined FCBs have better stability than the raw series. With the multi-GNSS FCB products, the PPP AR for GPS/BDS-2/Galileo is demonstrated using the raw observations. For hourly static positioning results, the performance of the PPP AR with the three-system observations is improved by 42.6%, but only 13.1% for kinematic positioning results. The results indicate that precise and reliable positioning can be achieved with the PPP AR of GPS/BDS-2/Galileo, supported by multi-GNSS satellite orbit, clock, and FCB products based on iGMAS.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Tao Shi ◽  
Xuebin Zhuang ◽  
Liwei Xie

AbstractThe autonomous navigation of the spacecrafts in High Elliptic Orbit (HEO), Geostationary Earth Orbit (GEO) and Geostationary Transfer Orbit (GTO) based on Global Navigation Satellite System (GNSS) are considered feasible in many studies. With the completion of BeiDou Navigation Satellite System with Global Coverage (BDS-3) in 2020, there are at least 130 satellites providing Position, Navigation, and Timing (PNT) services. In this paper, considering the latest CZ-5(Y3) launch scenario of Shijian-20 GEO spacecraft via Super-Synchronous Transfer Orbit (SSTO) in December 2019, the navigation performance based on the latest BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), Galileo Navigation Satellite System (Galileo) and GLObal NAvigation Satellite System (GLONASS) satellites in 2020 is evaluated, including the number of visible satellites, carrier to noise ratio, Doppler, and Position Dilution of Precision (PDOP). The simulation results show that the GEO/Inclined Geo-Synchronous Orbit (IGSO) navigation satellites of BDS-3 can effectively increase the number of visible satellites and improve the PDOP in the whole launch process of a typical GEO spacecraft, including SSTO and GEO, especially for the GEO spacecraft on the opposite side of Asia-Pacific region. The navigation performance of high orbit spacecrafts based on multi-GNSSs can be significantly improved by the employment of BDS-3. This provides a feasible solution for autonomous navigation of various high orbit spacecrafts, such as SSTO, MEO, GEO, and even Lunar Transfer Orbit (LTO) for the lunar exploration mission.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


Sign in / Sign up

Export Citation Format

Share Document